

Mathématiques

Classe: BAC

Chapitre: Nombres complexes

Rappel

Le plan est rapporté à un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

Produits remarquables

a et b deux nombres complexes (a+ib)(c+id) = ac-bd+i(ad+bc) $(a+ib)^2 = a^2-b^2+2iab$ $(a-ib)^2 = a^2-b^2-2iab$ $(a+ib)(a-ib) = a^2+b^2$ $(1+i)^2 = 2i, (1-i)^2 = -2i$ et (1+i)(1-i) = 2

Retenons

1. Soit z un nombre complexe $M(z) \Leftrightarrow M(\text{Re}(z), \text{Im}(z))$.

$$2. \ \ z_{\overrightarrow{AB}} = z_B - z_A$$

3.
$$I = A^*B \Leftrightarrow z_I = \frac{z_A + z_B}{2}$$

Retenons

1. $\frac{a \text{ et } b}{a+ib} = a-ib \text{ et } |a+ib| = \sqrt{a^2+b^2}$

2. Soit z un nombre complexe.

• $z + \overline{z} = 2 \operatorname{Re}(z)$

• $z - \overline{z} = 2i \operatorname{Im}(z)$

• $z \in \mathbb{R} \Leftrightarrow z = \overline{z}$

• $z \in i\mathbb{R} \Leftrightarrow z = -\overline{z}$

3. z = a + ib, $(a, b) \in \mathbb{R}^2$, $z \cdot \overline{z} = a^2 + b^2$

Equation: $az^2 + bz + c = 0$, $a \in \mathbb{C}^*$

Racine carrée

 Tout nombre complexe non nul admet deux racines carrées opposées

• Soit Δ un nombre complexe non nul.

1. z = x + iy où x et des réels est une racine carré de Δ si et seulement si $\begin{cases} x^2 - y^2 = 2\operatorname{Re}(\Delta) \\ x^2 + y^2 = |\Delta| \\ 2xy = \operatorname{Im}(\Delta) \end{cases}$

2. Les racines carrées de Δ sont $\pm \sqrt{|\Delta|e^{i\left(\frac{\arg(\Delta)}{2}\right)}}$.

Conséquences

 \checkmark Soit Δ un nombre complexe non nul et δ une racine carrée de Δ .

 \checkmark Si $\Delta = -2$ Alors $\delta = \pm i\sqrt{2}$.

 \checkmark Si $\Delta = b, b \in IR$ Alors $\delta = \pm i \sqrt{|b|}$

 \checkmark Si $\Delta = 2i$ Alors $\delta = \pm (1+i)$.

 \checkmark Si $\Delta = -2i$ Alors $\delta = \pm (1-i)$

 \checkmark Si $\Delta = 5i = \frac{5}{2}(2i)$ Alors $\delta = \pm \sqrt{\frac{5}{2}}(1+i)$

 \checkmark $Si\Delta = -5i = \frac{5}{2}(-2i)$ Alors $\delta = \pm \sqrt{\frac{5}{2}}(1-i)$

Théorème et Définition

Soit a,b et c des nombres complexes tels que $a \neq 0$. L'équation $az^2 + bz + c = 0$, admet dans \mathbb{C} , deux solutions définies par: $z_1 = \frac{-b - \delta}{2a}$ et $z_i = \frac{-b + \delta}{2a}$ où δ est une racine carrée de $\Delta = b^2 - 4ac$

ATTENTION

Si $\Delta \notin \mathbb{R}_+$ éviter d'écrire $\delta = \sqrt{\Delta}$

Conséquences

Si z_1 et z_2 sont les solutions de l'équation $az^2 + bz + c = 0, a \neq 0$

Alors $az^2 + bz + c = a(z - z_i)(z - z_z)$

$$z_1 + z_2 = -\frac{b}{a}$$
 , $z_1 z_2 = \frac{c}{a}$

Exemples d'équations de degré supérieur ou égal à 3

Théorème

Soit $a_1, a_2, ..., a_n$ des nombres complexes tels que $a_n = 0$ et $n \ge 2$.

Soit $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z_1 + a_0$

Si z_0 est un zéro de P(z) alors $P(z) = (z - z_0) g(z)$ où g(z) est un polynôme de degré n-1.

Nombres complexes et transformations

Symétrie orthogonale d'axe (O, \vec{u})

L'application du plan dans lui qui \hat{a} tout point M d'affixe z associe le point M' d'affixe \overline{z} est la symétrie orthogonale d'axe $\left(\mathsf{O},\ \overrightarrow{u}\right)$.

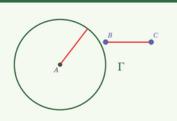
Symétrie centrale de centre O

L'application du plan dans lui même qui à tout point M d'affixe z associe le point M' d'affixe -z est la symétrie centrale de centre O.

LIEUX GÉOMÉTRIQUES

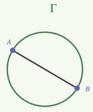
A, B et C désignent trois points du plan P deux à deux distincts.

L'ensemble $\Gamma = \{M \in \mathscr{P}/MA = BC\}$ est le cercle de centre A et de rayon BC.



L'ensemble $\Gamma = \{M \in \mathscr{P} \mid MA = MB\}$ est la médiatrice de [AB].

L'ensemble $\Gamma = \{M \in \mathscr{P} / \overrightarrow{MA} \cdot \overrightarrow{MB} = 0\}$ est le cercle de diamètre [AB] .



L'ensemble $\Gamma=\{M\in \mathscr{P}/\overrightarrow{MA}\cdot\overrightarrow{BC}=0\}$ est la perpendiculaire à (BC) passant par A .

