

Mathématiques

Classe: BAC

Chapitre: Limite et Continuité

Limite d'une fonction

Définition

Soit f une fonction numérique à variable réelle. a et ℓ sont deux réels.

- $\lim_{x \to a} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0$, $\exists \alpha > 0$ tel que si $x \in D_f$ et $|x a| < \alpha$ alors $|f(x) \ell| < \varepsilon$
- $\lim_{x \to a} f(x) = +\infty \Leftrightarrow \forall A > 0$, $\exists \alpha > 0$ tel que si $x \in D_f$ et $|x a| < \alpha$ alors f(x) > A
- $\lim_{x \to a} f(x) = -\infty \Leftrightarrow \forall A > 0$, $\exists \alpha > 0$ tel que si $x \in D_f$ et $|x a| < \alpha$ alors f(x) < -A
- $\lim_{x \to +\infty} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0$, $\exists B > 0$ tel que si $x \in D_f$ et x > B alors $|f(x) \ell| < \varepsilon$
- $\lim_{x \to -\infty} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0$, $\exists B > 0$ tel que si $x \in D_f$ et x < -B alors $|f(x) \ell| < \varepsilon$
- $\lim_{x \to a} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B > 0$ tel que si $x \in D_f$ et x > B alors f(x) > A
- $\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall A > 0, \exists B > 0$ tel que si $x \in D_f$ et x > B alors f(x) < -A

Théorème

- ullet Si une fonction f admet une limite alors cette limite est unique.
- Soit f une fonction définie et positive sur un intervalle I:
 - * Si $\lim_{x_0} f = \ell$ alors $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{\ell}$ (x_0 fini ou infini)
 - * Si $\lim_{x_0} f = +\infty$ alors $\lim_{n \to x_0} \sqrt{f(x)} = +\infty$ (x_0 fini ou infini)

Limites de fonctions trigonométriques

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos ax}{x^2} = \frac{a^2}{2}$$

$$\lim_{x \to 0} \frac{1 - \cos ax}{x} = a, (a \in \mathbb{R})$$

$$\lim_{x \to 0} \frac{\sin ax}{x} = a,$$

$$\lim_{x \to 0} \frac{\tan(ax)}{x} = a$$

Opérations sur les limites

 x_0 désigne un nombre réel ou $+\infty$ ou $-\infty$; ℓ et ℓ' désignent des réels.

$\lim_{x \to x_0} f(x)$	ℓ	$\ell \neq 0$	0	∞	0	+∞	$-\infty$	+∞	$\ell \neq 0$	$\ell \neq 0$
$\lim_{x \to x_0} g(x)$	ℓ'	0	0	0	∞	+∞	$-\infty$	$-\infty$	+∞	-∞
$\lim_{x \to x_0} (f(x) + g(x))$	$\ell + \ell'$	ℓ	0	∞	∞	+∞	$-\infty$	F.I	+∞	-∞
$\lim_{x \to x_0} f(x).g(x)$	$\ell.\ell'$	0	0	F.I	F.I	+∞	+∞	$-\infty$	$\pm\infty$ (signe ℓ)	$\pm\infty$ (signe ℓ)
$\lim_{x \to x_0} \frac{f(x)}{g(x)}$	$\frac{\ell}{\ell'}(\ell' \neq 0)$	∞	F.I	∞	0	∞	∞	∞	0	0

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} f(x) $	$\lim_{x \to x_0} \sqrt{f(x)}$
ℓ	$ \ell $	$\sqrt{ \ell }$
+∞	+∞	+∞
$-\infty$	+∞	+∞

Limite et ordre

f est une fonction, x_0 désigne un nombre réel ou $+\infty$ ou $-\infty$; ℓ et ℓ' désignent des réels et I désigne un intervalle ouvert de centre x_0 si $x_0 \in \mathbb{R}$ si non intervalle de type $]a, +\infty[$ ou $]-\infty, b[$.

Théorème 1

Si
$$\begin{cases} f \text{ est positive sur I} \\ \lim_{x \to x_0} f(x) = \ell \end{cases}$$
 alors $\ell \ge 0$

$$\mathsf{Si} \ \left\{ \begin{array}{l} g(x) \leq f(x) \text{ sur un voisinage de } x_0 \\ \lim_{x \to \infty} f(x) = \ell, \ell \in \mathbb{R} \text{ et } \lim_{x \to \infty} g(x) = \ell' \in \mathbb{R} \end{array} \right. \ \text{alors } \ell' \leq \ell$$

Théorème 3

$$Si\begin{cases} g(x) \leq f(x) \leq h(x), \text{ sur un voisinage de } x_0 \\ \lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = \ell \\ \lim_{x \to x_0} f(x) = \ell \end{cases}$$
 alors

Théorème 4

$$\mbox{Si} \quad \begin{cases} |f(x)-\ell| \leq g(x) \mbox{ sur un voisinage de } x_0 \\ \lim_{x \to x_0} g(x) = 0 \\ \lim_{x \to x_0} f(x) = \ell. \end{cases} \mbox{alors}$$

Théorème 5

S'il existe une fonction g vérifiant : $\begin{cases} f(x) \leq g(x) \text{ sur } I \\ \lim_{x \to x_0} g(x) = -\infty \end{cases}$ alors $\lim_{x \to x_0} f(x) = -\infty$

S'il existe une fonction g vérifiant : $\begin{cases} g(x) \leq f(x) \text{ sur } I \\ \lim_{x \to x_0} g(x) = +\infty \end{cases}$ alors $\lim_{x \to x_0} f(x) = +\infty$

Limite d'une fonction monotone

Théorème

Soit f une fonction définie sur un intervalle de type [a,b[(fini ou infini).

- ullet Si f est croissante et majorée alors elle admet une limite finie en b .
- Si f est croissante et non majorée alors f tend vers $+\infty$ en h.
- Si f est décroissante et minorée alors elle admet une limite finie en b .
- Si f est décroissante et non minorée alors f tend vers $-\infty$ en b

Limite d'une fonction composée

Théorème 1

 x_0 , b et λ désigne des réels ou $+\infty$ ou $-\infty$. Si $\begin{cases} \lim_{x \to x_0} f(x) = b \\ \lim_{x \to b} g(x) = \lambda \\ \text{alors } \lim_{x \to x_0} g \circ f(x) = \lambda \end{cases}$

Corollaire

Si $\begin{cases} \lim_{x \to x_0} f(x) = b, (b \in IR) \\ g \text{ est continue en } b \end{cases}$ alors $\lim_{x \to x_0} g \circ f(x) = g(b)$

Branches infinies

Asymptotes

Limite	Interprétation		
$\lim_{a} f = \pm \infty \text{ ou } \lim_{a^{\pm}} f = \pm \infty$	La droite $D: x = a$ est asymptote à \mathscr{C}		
$\lim_{+\infty} f = b \text{ ou } \lim_{-\infty} f = b, b \in \mathbb{R}$	La droite $D: y = b$ est asymptote à \mathscr{C}		
$\lim_{\pm \infty} (f(x) - (ax + b)) = 0$	La droite $D: y = ax + b$ est asymptote à \mathscr{C}		

Etude d'une branche infinie

Dans le cas où $\lim_{x \to +\infty} f(x) = \pm \infty$.

Soit f une fonction telle que $\lim_{x \to +\infty} f(x) = \pm \infty$ et \mathscr{C}_f sa courbe représentative dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

Dans ce qui suit le procédé quil faut suivre pour déterminer la branche infinie au voisinage de $+\infty$.

- * Si $\lim_{x \to +\infty} \frac{f(x)}{x} = \pm \infty$, alors la courbe \mathscr{C}_f admet une branche infinie de direction asymptotique celle de $\left(O, \overrightarrow{j}\right)$ au voisinage de $+\infty$.
- * Si $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$, alors la courbe \mathscr{C}_f admet une branche infinie de direction asymptotique celle de $\left(O,\overrightarrow{i}\right)$ au voisinage de $+\infty$.
- * Si $\lim_{x \to +\infty} \frac{f(x)}{x} = a$ avec $(a \neq 0)$, alors deux cas peuvent se présenter :
 - ✓ Si $\lim_{x \to +\infty} f(x) ax = b$ avec $(b \in \mathbb{R})$ alors la droite déquation y = ax + b est une asymptote à la courbe \mathscr{C}_f au voisinage de $+\infty$.
 - ✓ Si $\lim_{x \to +\infty} f(x) ax = \pm \infty$ alors la courbe \mathscr{C}_f admet une direction asymptotique celle de la droite déquation y = ax au voisinage de $+\infty$.

Théorème 2

- Soit f une fonction définie sur un intervalle de type $]a, +\infty[$. $\lim_{x \to +\infty} f(x) \text{ existe, signifie que } \lim_{x \to 0^+} f\left(\frac{1}{x}\right) \text{ existe et dans ce cas, on a } : \lim_{x \to +\infty} f(x) = \lim_{x \to 0^+} f\left(\frac{1}{x}\right)$
- Soit f une fonction définie sur un intervalle de type $]-\infty,a[$. $\lim_{x\to -\infty} f(x) \text{ existe, signifie que } \lim_{x\to 0^-} f\left(\frac{1}{x}\right) \text{ existe et dans ce cas, on a: } \lim_{x\to -\infty} f(x) = \lim_{x\to 0^-} f\left(\frac{1}{x}\right)$

Continuité

Continuité d'une fonction composée

Si f est continue en x_o et g est continue en $f(x_0)$ alors $g \circ f$ est continue en x_0 .

Si $\begin{cases} f \text{ est continue sur un intervalle } I \\ g \text{ est continue sur un intervalle } J \\ \text{pour tout } x \text{ de } I \text{ on a: } f(x) \in J \end{cases}$ alors $g \circ f$ est continue sur I.

Théorème 1

L'image d'un intervalle par une fonction continue est un intervalle.

Théorème 2 : (Théorème des valeurs intermédiaires)

Soit f une fonction continue sur un intervalle I et a et b deux réels de I.

Pour tout réel λ compris entre f(a) et f(b) il existe au moins un réel $x_0 \in [a,b]$ tel que $f(x_0) = \lambda$.

Si de plus f est strictement monotone alors x_0 est unique.

corollaire

Soit f une fonction continue sur un intervalle fermé borné [a,b] telle que f(a).f(b) < 0. Il existe au moins un réel $x_0 \in]a,b[$ tel que $f(x_0) = 0$.

Théorème 3

Toute fonction continue et ne s'annule pas sur un intervalle I alors elle garde un signe contant sur I.

Théorème 4

L'image d'un intervalle fermé borné [a,b] par une fonction continue est un intervalle fermé borné [m,M]

Image d'un intervalle par une fonction monotone

Théorème

L'image d'un intervalle I par une fonction continue et monotone sur I est un intervalle de même nature.

Intervalle I	Si f est croissante sur I	Si f est décroissante sur I	
I = [a, b]	f(I) = [f(a), f(b)]	f(I) = [f(b), f(a)]	
I = [a, b[$f(I) = [f(a), \lim_{x \to b^{-}} f(x)]$	$f(I) = \lim_{x \to b^{-}} f(x), f(a)$	
$I = [a, +\infty[$	$f(I) = [f(a), \lim_{x \to +\infty} f(x)]$	$f(I) = \lim_{x \to +\infty} f(x), f(a)$	
I=]a,b[$f(I) = \lim_{x \to a^{+}} f(x), \lim_{x \to b^{-}} f(x)$	$f(I) = \lim_{x \to b^{-}} f(x), \lim_{x \to a^{+}} f(x)$	

