

Mathématiques

Classe: BAC

Chapitre: Fonctions réciproques

Définition

Soit f une fonction définie sur un intervalle I, si pour tout y de f(I), il existe une unique réel x de I tel que f(x) = y alors f est une bijection de I sur f(I).

Théorème

Si f est strictement monotone sur I alors f réalise une bijection de I sur f(I).

- On note f^{-1} la fonction réciproque de f
- f^{-1} est définie sur f(I)
- $\forall y \in I$ et tout x de f(I): $f^{-1}(x) = y \Leftrightarrow f(y) = x$

Courbe d'une bijection réciproque

Les courbes, dans un repère orthonormé, d'une bijection f et de sa réciproque f^{-1} sont symétriques par rapport à la droite y = x.

Théorème

Si f est continue et strictement monotone sur un intervalle I alors f réalise une bijection de I sur l'intervalle J = f(I). La bijection réciproque f^{-1} est continue et a le même sens de variation que f sur J = f(I).

Théorème

Soit f est une fonction strictement monotone sur un intervalle I.

- * Si f est dérivable en $a \in I$ et $f'(a) \neq 0$ Alors f^{-1} est dérivable en b = f(a) et $\left(f^{-1}\right)'(b) = \frac{1}{f'(a)}$.
- * Si f est dérivable sur I et pour tout $x \operatorname{de} I$; $f'(x) \neq 0$, alors f^{-1} est dérivable sur f(I) et pour tout x de f(I) on $a: (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

Points méthode

Soit f une bijection d'un intervalle I sur J = f(I).

- * Si on te demande d'étudier la dérivabilité de f^{-1} en b La première chose à faire c'est : chercher $a = f^{-1}(b)$ puis étudier la dérivabilité de f en a.
- * Si on te demande d'étudier la dérivabilité de f^{-1} sur un intervalle K La première chose à faire c'est : déterminer $L = f^{-1}(K)$ puis étudier la dérivabilité de f sur L.

Propriétés

Soit n un entier supérieur ou égal à 2. x et y sont des réels positifs.

- $x^n = y \Leftrightarrow x = \sqrt[n]{y}$.
- $(\sqrt[n]{x})^n = x$, $\sqrt[n]{x^n} = |x| = x$.
- La fonction $x \to \sqrt[n]{x}$ est continue et strictement croissante sur $[0, +\infty[$.
- $\lim_{x \to +\infty} \sqrt[n]{x} = +\infty$.

Propriétés

Soit n un entier supérieur ou égal à 2. x et y sont des réels positifs.

- $\sqrt[n]{xy} = (\sqrt[n]{x})(\sqrt[n]{y}).$
- y > 0, $\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$.
- $\bullet \quad \sqrt[n]{\sqrt[m]{x}} = \sqrt[mn]{x}.$
- $\sqrt[n]{x^m} = (\sqrt[n]{x})^m$, $\sqrt[mn]{x^m} = \sqrt[n]{x}$, $\sqrt[n]{x} = x^{\frac{1}{n}}$ x > 0

Théorème

- La fonction $x \to \sqrt[n]{x}$ est dérivable sur $]0, +\infty[$ et $\forall x > 0$, $(\sqrt[n]{x})' = \frac{1}{n} \frac{\sqrt[n]{x}}{x} = \frac{1}{n\sqrt[n]{x^{n-1}}}$.
- Si f est dérivable et strictement positive sur I alors $\sqrt[n]{f}$ est dérivable sur I et $(\sqrt[n]{f})' = \frac{1}{n} \frac{f' \sqrt[n]{f}}{f}$.

