Matière : Mathématiques

Exercice 1 (4 points)

- ✓ Contenu : Nombres complexes géométrie
- ✓ Aptitudes visées : Représenter un point connaissant son affixe, déterminer le module d'un nombre complexe, résoudre une équation du second degré à coefficients complexes, connaître la nature d'un triangle.
- ✓ Corrigé :
- 1- a) $i^3 + i \cdot i^2 2i + 4i = -i i 2i + 4i = 0$ donc i est une solution de (E).
 - b) Comme i est une solution de (E) alors on peut écrire :

$$z^{3} + iz^{2} - 2z + 4i = (z - i)(z^{2} + bz + c) = z^{3} + (b - i)z^{2} + (c - ib)z - ic$$

$$\begin{cases} \mathbf{b} - \mathbf{i} = \mathbf{i} \\ \mathbf{c} - \mathbf{i}\mathbf{b} = -2 \end{cases}$$

Par identification ,on obtient $\begin{cases} \mathbf{b} - \mathbf{i} = \mathbf{i} \\ \mathbf{c} - \mathbf{i} \mathbf{b} = -\mathbf{2} \\ -\mathbf{i} \mathbf{c} = \mathbf{4} \Box \end{cases}$ d'où b = 2i et c = -4.

Par suite $z^3 + iz^2 - 2z + 4i = (z - i) (z^2 + 2iz - 4)$

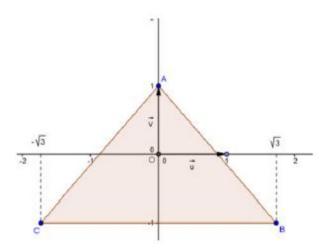
2- a)
$$(z-i)(z^2+2iz-4)=0$$
 signifie $z=i$ ou $z^2+2iz-4=0$.

Or
$$z^2 + 2iz - 4 = 0$$
. $a=1$, $b=2i=2b$ 'signifie b'=i et c=-4

Donc
$$\Delta' = b^{2} - ac = 3$$
 d'où z' = $-i + \sqrt{3}$ et z'' = $-i - \sqrt{3}$

Conclusion:
$$S_C = \{ i; -i + \sqrt{3} ; -i - \sqrt{3} \}$$
.

- b) Question hors programme. (non notée)
- 3- a)



b)
$$AB = \|\mathbf{z}_B - \mathbf{z}_A\| = \|-\mathbf{i} + \sqrt{3} - \mathbf{i}\| = \|\sqrt{3} - 2\mathbf{i}\| = \sqrt{3 + 4} = \sqrt{7}.$$

$$AC = \|\mathbf{z}_C - \mathbf{z}_A\| = \|-\mathbf{i} - \sqrt{3} - \mathbf{i}\| = \|-\sqrt{3} - 2\mathbf{i}\| = \sqrt{3 + 4} = \sqrt{7}.$$

Ainsi AB = AC donc ABC est un triangle isocèle de sommet principale A.

Exercice 2 (5,5 points)

- ✓ Contenu : Déterminant d'une matrice d'ordre3, inverse d'une matrice d'ordre3, système linéaire 3 × 3.
- ✓ **Aptitudes visées :** Modéliser une situation par un système linéaire, calculer le déterminant d'une matrice d'ordre3, reconnaitre l'inverse d'une matrice d'ordre3, résoudre un système linéaire 3 × 3.
- ✓ Corrigé :

$$\begin{cases} x + 2y + 3z = 3200 \\ 4x + 2y + 5z = 4600 \\ 3\Box + y + 3z = 2700 \end{cases}$$

2- a) $\det(A) = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 2 & 5 \\ 3 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 5 \\ 1 & 3 \end{vmatrix} - 4 \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} + 3 \begin{vmatrix} 2 & 3 \\ 2 & 5 \end{vmatrix} = 1 - 12 + 12 = 1 \neq 0 \text{ donc A est inversible }.$

$$A \times B = \begin{pmatrix} \textbf{1} & \textbf{2} & \textbf{3} \\ \textbf{4} & \textbf{2} & \textbf{5} \\ \textbf{3} & \textbf{1} & \textbf{2} \end{pmatrix} \begin{pmatrix} \textbf{1} & -\textbf{3} & \textbf{4} \\ \textbf{3} & -\textbf{6} & \textbf{7} \\ -\textbf{2} & \textbf{5} & -\textbf{6} \end{pmatrix} = \begin{pmatrix} \textbf{1} & \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{1} & \textbf{0} \\ \textbf{0} & \textbf{0} & \textbf{1} \end{pmatrix} = I_3 \quad donc \quad A^{-1} = B$$

$$\begin{pmatrix} \textbf{x} \\ \textbf{y} \\ \textbf{D} \end{pmatrix} \qquad \begin{pmatrix} \textbf{3200} \\ \textbf{4600} \\ \textbf{2700} \end{pmatrix}$$

Par suite AU= V signifie U= A⁻¹V signifie U=BV signifie

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} 1 & -3 & 4 \\ 3 & -6 & 7 \\ -2 & 5 & -6 \end{pmatrix} \begin{pmatrix} 3200 \\ 4600 \\ 2700 \end{pmatrix}$$

D'où x = 200 dinars; y = 900 dinars et z = 400 dinars.

Exercice 3 (4,5 points)

- ✓ Contenu : Arithmétique.
- Aptitudes visées: Modéliser une situation par une équation du type ax + by = c, connaître et utiliser les propriétés de la divisibilité dans Z, calculer le pgcd de deux entiers, reconnaître que deux entiers sont premiers entre eux, résoudre dans Z^2 , des équations du type ax + by = c.
- ✓ Corrigé :
- 1- a) Si (x, y) est solution de (E) alors 8x + 5y = 100 signifie 8x=100-5y=5(20-y) ce qui donne que 5 divise 8x et comme $5 \land 8 = 1$ donc d'après le théorème de Gauss 5 divise x c'està-dire x est un multiple de 5.
- b) D'après a) si (x, y) est solution de (E) alors x est multiple de 5 donc x = 5k, $k \in Z$ on remplace x dans l'équation(E) on obtient $8 \times 5k + 5y = 100$ signifie 8k + y = 20 d'où y = 20 8k, $k \in Z$.

Réciproquement, pour tout $k \in Z$ le couple (x, y) = (5k, 20 - 8k) vérifier l'équation (E) Conclusion $Sz \times z = \{(5k, 20 - 8k) : k \in Z\}$.

2- soit x le nombre de lycéens et y le nombre de collégiens.

Les composantes possibles de ce groupe vérifier l'équation (E): 8x + 5y = 100 donc d'après 1) (x, y) = $\{(5k, 20 - 8k), k \in \mathbb{Z}.$

Or $x \ge 0$ et $y \ge 0$ donc 5k > 0 et $20 - 8k \ge 0$ ce qui donne k > 0 et $k \le \frac{20}{8}$ Ainsi $k \in \{1, 2\}$.

Conclusion: $(x, y) \in \{ (5, 12); (10, 4) \}$.

Exercice 4 (6 points)

- ✓ **Contenu :** Fonctions numériques ; limites, continuité, dérivabilité, variation, tangente à une courbe en un point, courbe, calcul d'aire.
- ✓ Aptitudes visées: Lire un tableau de variation d'une fonction, déterminer les limites d'une fonction, déterminer la dérivée d'une fonction , déterminer le sens de variation d'une fonction , reconnaître une équation de la tangente à une courbe en un point, identifier les branches infinies d'une courbe, tracer une courbe, calculer l'aire d'une partie du plan.
- ✓ Corrigé :
- 1- a) $\lim_{x\to+\infty} f(x) = -\infty$.
- b) $A(1,1) \in C$ signifie f(1) = 1T: y = x est la tangente à C au point A(1,1) donc f'(1) = 1.

$$2- a) \quad \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} x(1 - \ln x) = \lim_{x \to 0^+} (x - x \ln x) = 0.$$

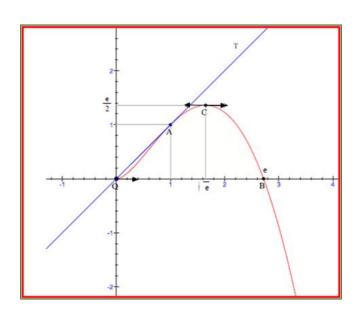
Ainsi f est dérivable à droite en 0 et $\mathbf{f_d}(0) = 0$ et par suite C admet une demi tangente horizontale à dirigée à droite au point O.

b) On a
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} x(1 - \ln x) = -\infty$$
.

donc C admet une branche parabolique de direction (Oy) au voisinage de $+\infty$.

c) f(x) = 0 signifie x = 0 ou $(1 - \ln x) = 0$ signifie x = 0 ou $\ln x = 1$ signifie x = 0 ou x = 0. Conclusion: $C \cap (Ox) = \{O(0, 0); B(0, 0)\}$.

d)



3- A=

A = = . A l'aide d'une intégration par partie , on pose : $u(x) = 1 - \ln x$ et $v'(x) = x^2$ donc u'(x) = $-\frac{1}{x}$ et v(x) = $\frac{1}{3}$ x³, ce qui donne :

$$A = \begin{bmatrix} \frac{1}{3} x^3 (1 - \ln x) \end{bmatrix}_1^e + \frac{1}{3} \int_1^e x^2 \Box x = -\frac{1}{3} + \frac{1}{3} \begin{bmatrix} \frac{1}{3} x^3 \end{bmatrix}_1^e = \frac{e^3 - 4}{9} \quad (\text{u.a.}).$$