Combinaisons. Binôme de NEWTON

Factorielles

- On pose 0! = 1 et pour tout entier naturel non nul $n! = 1 \times 2 \times ... (n-1) \times n$.
- Pour tout entier naturel n, on a $(n+1)! = (n+1) \times n!$.

Les premières factorielles

$$0! = 1$$
 $1! = 1$ $2! = 2$ $3! = 6$ $4! = 24$ $5! = 120$ $6! = 720$ $7! = 5040$.

Combinaisons

Soient n un entier naturel non nul et E un ensemble à n éléments. Pour tout entier naturel p, une combinaison à p éléments de E est une partie à p éléments de E.

On note
$$\binom{n}{p}$$
 le nombre de combinaisons à p éléments d'un ensemble à n éléments. On a donc $\binom{n}{0} = 1$ et si $p > n$, $\binom{n}{p} = 0$.

Ensuite, pour n et p entiers naturels tels que $1 \le p \le n$, le nombre de combinaisons à p éléments d'un ensemble à n

$$\binom{n}{p} = \overbrace{\frac{n(n-1)\dots(n-p+1)}{p!}}^{p \; \mathrm{facteurs}}$$

Propriétés des combinaisons

- Pour tout entier naturel n, $\binom{n}{0} = \binom{n}{n} = 1$.
- $\bullet \text{ Pour } n \text{ et } p \text{ entiers naturels tels que } n \geq 1 \text{ et } 0 \leq p \leq n, \, \binom{n}{p} = \frac{n!}{p!(n-p)!}.$
- Pour n et p entiers naturels tels que $0 \le p \le n-1$, $\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$.

Triangle de PASCAL

np	0	1	2	3	4	5
0	1	0	0	0	0	0
1	1	1	0	0	0	0
2	1	2	1	0	0	0
3	1	3 —	→ 3	1	0	0
4	1	4	6	4	1	0
5	1	5	10	10	5	1

$$\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$$

Formule du binôme de Newton

Pour tous nombres complexes a et b et tout entier naturel non nul n,

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \ldots + \binom{n}{n-2}a^{2}b^{n-2} + \binom{n}{n-1}ab^{n-1} + b^{n}.$$

Ainsi,

- $\bullet (a+b)^1 = a+b$

- $(a + b)^2 = a^2 + b^2$ $(a + b)^2 = a^2 + 2ab + b^2$ $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ $(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$