Limites et continuités 4 ème A

Exercice $n^{\circ}01$:

Calculer les limites suivantes:

$\lim_{x \to 2} \frac{2x - x^2}{2 - x}$	$\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3}\cos(x) - \sin(x)}{x - \frac{\pi}{3}}$	$\lim_{x \to +\infty} \frac{x + \cos(x)}{2 - \cos(x)}$	$\lim_{x \to (-2)^{-}} \frac{\sqrt{x^2 - 4}}{x + 2}$
$\lim_{x \to 3} \frac{\sqrt{x+6}-3}{x-3}$	$\lim_{x \to +\infty} \left(\sqrt{x+2} - \sqrt{x} \right)$	$\lim_{x \to +\infty} \frac{\sqrt{x+\sqrt{x}+\sqrt{x}}}{\sqrt{x+1}}$	$\lim_{x \to 0^+} \left[\frac{1}{x} + \cos\left(\frac{1}{x}\right) \right]$
$\lim_{x \to 1^+} \sqrt{\frac{1 - 3x}{-2x^2 + x + 1}}$	$\lim_{x \to +\infty} \frac{x + \cos(x)}{2 - \cos(x)}$	$\lim_{x \to +\infty} \frac{\sqrt{x-2} - \sqrt{x}}{\sqrt{x+2} + \sqrt{x}}$	$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{1 - \cos(x)} - \sqrt{1 - \sin(x)}}{1 - \tan(x)}$
$\lim_{x \to 0} \frac{\cos(x) - \sqrt{\cos(2x)}}{\sin^2(x)}$	$\lim_{x \to -\infty} \frac{E(x)}{x^2}$	$\lim_{x \to -\infty} \frac{x+1-\sqrt{1-x}}{x^2-\sqrt{x^2+2}}$	$\lim_{x \to \frac{\pi}{6}} \frac{\cos(x) - \sqrt{3}\sin(x)}{\pi - 6x}$

Exercice $n^{\circ}02$:

Soient a et b deux réels tel que : $\forall \varepsilon > 0$, $|a-b| < \varepsilon$. Montrer que a=b.

Exercice $n^{\circ}03$:

Soient
$$f(x) = E(2x) - 2E(x)$$
 et $g(x) = \frac{E(2x) - E(x)}{x}$.

- 1. Etudier la continuité de f en 1.
- 2. Calcular $\lim_{x \to +\infty} g(x)$.
- 3. Montrer que g est prolongeable par continuité en 0.

Exercice $n^{\circ}04$:

Soit f une fonction continue et croissante sur \mathbb{R}_+ tel que $\lim_{x \to +\infty} \frac{f(x)}{x} = \lambda$; $\lambda < 1$. Montrer que l'équation f(x) = 1 admet au moins une solution dans \mathbb{R}_+ .

Exercice $n^{\circ}05$:

Soit f une fonction bornée $sur \]-1, 1[$. Calculer $\lim_{x\to 0} xf(x) \left[\cos(\frac{1}{x}) + \sin(\frac{2}{x})\right]$

Exercice n°06:

Soit
$$h(x) = \frac{\sqrt{x+1}-1}{x}$$

- 1. Montrer que $\forall x \in \mathbb{R}^*$, on $a : \left| h(x) \frac{1}{2} \right| \le |x|$.
- 2. En déduire que $\lim_{x\to 0} h(x)$.

Exercice $n^{\circ}07$:

Soit
$$f(x) = \begin{cases} \frac{1}{1+x} - \frac{\sin(x)}{x} & \text{si } x < 0 \\ -\frac{3x}{\sqrt{x^2+3}} & \text{si } x \ge 0 \end{cases}$$

- 1. Déterminer D_f .
- 2. Montrer que f est continue sur D_f .
- 3. Calculer $\lim_{x \to \pm \infty} f(x)$.
- 4. Soit g la fonction définie sur \mathbb{R}^* par $g(x) = \frac{f[|\sin(\frac{\pi}{2}x)|]}{x}$.
- a) Calculer $\lim_{x \to -\infty} g(x)$.
- b) Montrer que l'équation $g(x)=-\frac{1}{2}$ admet au moins une solution $\alpha\in[1,2]$.