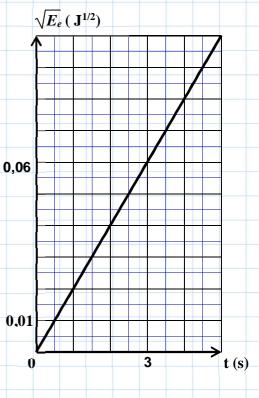


LE CONDENSATEUR

Exercice 4:


On dispose au laboratoire :

- d'un condensateur plan initialement déchargé de capacité C inconnue, de surface en regard commune S=1m² et d'épaisseur e =0.1 mm.
- d'un interrupteur K.
- d'un générateur de courant qui débite un courant d'intensité constante I= 80μΑ.
- d'un ampèremètre.

A l'instant $\mathbf{t} = \mathbf{0}$, l'interrupteur \mathbf{K} est fermé, les données acquises lors de l'expérience sont traitées par un ordinateur et permettent d'obtenir le graphe de la figure ci-contre représentant

$$\sqrt{E_c} = f(t)$$

- 1°) faire le schéma du circuit.
- $2^\circ)$ a- Exprimer $u_c(t)$ en fonction de I ,t et C .
 - **b-** Donner l'expression de l'énergie électrostatique
- E_e en fonction de C et u_c
 - c- Justifier théoriquement l'allure de la courbe.
- 3°) Déterminer à partir du graphe la valeur de la capacité C du condensateur.
- 4°) Sachant que la tension de claquage du condensateur est $(U)_{claquage} = 50~V$, déterminer l'instant à partir duquel le condensateur risque la détérioration :
 - a- Graphiquement
 - **b-** Par calcul
- 5°) Déterminer la permittivité électrique relative du diélectrique placé entre les armatures du condensateur. On donne la permittivité électrique absolue de l'air : $\epsilon_0 = 8,85.10^{-12} \text{ F.m}^{-1}$.

