Exercice N°1:

I- Soit f la fonction définie \Box par $f(x) = \frac{1}{1+e^x}$ et soit C sa courbe représentative dans un repère orthonormé $R^{\left(0,\vec{i},\vec{j}\right)}: \left(\|\vec{i}\| = 4cm\right)$

- $\lim_{x\to +\infty} f(x) \quad \text{et} \lim_{x\to -\infty} f(x) \\ \text{, interpréter graphiquement les résultats obtenus}$
- 2/ Dresser le tableau de variation de f
- 3/ Déterminer une équation cartésienne de la tangente T à C au point d'abscisse 0
- 4/ Soit g la fonction définie par g(x) = f(x) x
 - a) Etudier les variations de g
- b) Montrer que l'équation f(x) = x admet dans \Box une unique solution α et que : $0, 4 < \alpha < 0, 5$
- 5/ Construire T et C
- II 1/ Montrer que f réalise une bijection de usur un intervalle J dont on précisera
- 2/ Expliciter $f^{-1}(x)$ pour $x \in J$ (où f^{-1} est la fonction réciproque de f)
- 3)a) Donner le tableau de variation de $f^{-1}(x)$
- b) Donner une équation de la tangente T' à $C_{f^{-1}}$ au point d'abscisse $\overline{2}$
- c) Construire T' et C_f-1 dans le repère R

III-

$$f(x) = \frac{e^{-x}}{1 + e^{-x}} ; \forall x \in \square$$
1/ Vérifier que :

2/ Donner une primitive F de f sur

$$F(0) - F(-1) = Log(\frac{1+e}{2})$$
3/ Montrer que

Exercice N°2:

I- Soit g la fonction définie sur $]0,+\infty[$ par $g(x)=x^2+1-Logx$

1 / Etudier les variations de g et dresser son tableau de variation

2/ En déduire pour tout x de $]0,+\infty[$; g(x) > 0

II- Soit f la fonction définie sur
$$]0,+\infty[$$
 par : $f(x)=x+1+\frac{Logx}{x}$

On désigne par ζ_f sa courbe représentative dans un plan muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

1/a) Montrer que
$$f'(x) = \frac{g(x)}{x^2}$$
; $\forall x \in]0, +\infty[$

- b) Dresser tableau de variation de f
- 2/a) Montrer que la droite D : y = x + 1 est une asymptote à ζ_f
 - b) Etudier les positions de ζ_f par rapport à D
- 3/a) Montrer que f réalise une bijection de $]0,+\infty[$ sur un intervalle J que l'on précisera
 - b) Montrer que l'équation f(x)=0 admet une solution unique α et que $\frac{1}{e}<\alpha<\frac{1}{2}$
- 4/ Tracer D, ζ_f et $\zeta_{f^{-1}}$ dans le même repère (où f^{-1} est la fonction réciproque de f)
- 5/ Soit F une primitive de f sur $]0,+\infty[$

F(e) - F(1) =
$$\frac{e^2 + 2e - 2}{2}$$

Exercice N°3:

Soit f la fonction définie par $f(x) = x - \frac{1}{e^x - 1}$.

- I) 1) Dresser le tableau de variation de f.
- 2) a) Montrer que (C_f) admet deux asymptotes obliques d'équations respectives :

$$\Delta$$
: $y = x$ et Δ ': $y = x + 1$

- b) Montrer que $\omega(0; 1/2)$ est un centre de symétrie de (C_f).
- 3) Soit g la restriction de f sur $]0, +\infty[$
 - a) Montrer que g réalise une bijection de]0, +∞[sur IR.
 - b) En déduire que l'équation g(x) = 0, admet une unique solution α et que :

$$Log2 < \alpha < 1$$

- c) Montrer que f'(α) = 1+ α + α 2
- d) Ecrire une équation de la tangente T à (C_f) au point d'abscisse α
- e) Tracer T, Δ , Δ ' et (C_f) dans un repère orthonormé $R = (0, \vec{i}, \vec{j})$.(on prend $\alpha = 0.8$)
- II) On désigne par g-1 la fonction réciproque de g et (C') sa courbe représentative dans le repère R.
- 1) Montrer que g^{-1} est dérivable sue IR et calculer (g^{-1}) '(0) en fonction de α .
- 2) La courbe (C') coupe (xx') en un point I, écrire la tangente T' à (C') en I.
- 3) Tracer (C') et T' dans le même repère R.

Exercice N°4:

- 1) Soit g la fonction définie sur $[0, +\infty[$ par : $g(x) = -1 + (1 x) e^{-x}$
 - a) Calculer g'(x). Etudier son signe.
 - b) Démontrer que la limite de g en $+\infty$ est égale à -1.
 - c) Dresser le tableau de variation de g.
 - d) En déduire que pour tout $x \ge 0$, on a : $g(x) \le 0$.
- 2) Soit f la fonction définie sur $[0, +\infty[$ par : $f(x) = x e^{-x} x + 4$

Soit (C_f) sa courbe représentative dans un repère orthonormé (o, i, j) (unité:2cm)

- a) Vérifier que pour tout x de $[0, +\infty[$ on a : f'(x) = g(x).
- b) Etudier les variations de f sur $[0, +\infty[$. Préciser la limite de f en $+\infty$.
- 3) a) Montrer que la droite Δ d'équation : y = -x + 4 est asymptote à (C_f) . Etudier la position de (C_f) par rapport à Δ .
 - b) Soit D la droite d'équation : $y = -\frac{x}{2} + 4$

Calculer les coordonnées des points d'intersection de (Cf) et D.

- c) Préciser la tangente à (C_f) au point d'abscisse 0.
- d) Construire la courbe (C_f).

Exercice N°5

Soit f la fonction définie sur

$$\Box \text{ et que f'(x)} = \frac{4e^x}{(e^x + 1)^2}$$

- 1/a) Montrer que f est dérivable sur
 - b) Dresser le tableau de variation de f
- 2/a) Etudier les variations de la fonction g(x) = f(x) x. (remarquer que : $e^{2x} 2e^x + 1 = (e^x 1)^2$) b) Montrer que l'équation f(x) = x admet une unique solution a sur x = 1 et que x = 1
- 3/a) Montrer que $\forall x \in]2;3[$ on $a:|f'(x)| \le 0,5$
 - b) En déduire que $\forall x \in [2;3]$ on $a: |f(x)-a| \le 0, 5. |x-a|$

- a) Montrer par récurrence que $\forall n \in \square : 2 \le V_n \le 3$
- b) Montrer que : $|V_{n+1} a| \le 0, 5. |V_n a|$
- c) Déduire que $\forall n \in \mathbb{D} : |V_n a| \le (0,5)^n$ et calculer $\lim_{n \to +\infty} V_n$

Exercice Nº6

Le plan est rapporté à un repère orthonormé $\mathbf{R}=\stackrel{(o,i,j)}{=}$

Soit f la fonction définie sur IR par $f(x) = \ln(1 + e^{-x})$. On désigne par (Γ) la courbe de f dans le repère R.

- 1) Déterminer $\lim_{x \to -\infty} f(x) \lim_{\text{et } x \to +\infty} f(x)$
- 2) a) Montrer que pour tout réel x; $f(x) = x + \ln(1 + e^x)$.
 - b) En déduire que la courbe (Γ) admet au voisinage de ($-\infty$) une asymptote Δ dont on précisera une équation cartésienne.

3) a) Vérifier que pour tout réel
$$x$$
; $f'(x) = \frac{-1}{1+e^x}$.

- b) Dresser le tableau de variation de f.
- 4) On considère les points A, B et C de (Γ) d'abscisses respectives x_A = 0, x_B = 1 et x_C = -1 et soit T₀ la tangente à la courbe (Γ) au point A. Montrer que la droite (BC) est parallèle à T₀.
- 5) Tracer Δ , T_0 et (Γ) .

Exercice N°7

- I) Soit g la fonction définie sur IR par g(x) = $(1-x)e^{x} + 1$
- 1) Etudier le sens de variation de g.
- 2) Montrer que l'équation g(x)= 0 admet une unique solution x_0 et que $x_0 \in [1.2, 1.3]$
- 3) Déterminer le signe de g(x).

II) Soit f la fonction définie sur IR par
$$f(x) = \frac{x}{e^x + 1} + 2$$

On désigne par (C) la courbe de f dans un repère orthonormé R = (o, i, j)

- 1) Déterminer la limite de f en $+\infty$. Interpréter graphiquement ce résultat.
- 2) a) Calculer $\lim_{x \to -\infty} f(x)$.
 - b) Montrer que la droite D d'équation : y = x + 2 est asymptote de (C).
 - c) Etudier la position de (C) par rapport à D.

3) a) Montrer que f'(x) =
$$\frac{g(x)}{(e^x + 1)^2}$$

- b) Dresser le tableau de variation de f.
 - c) Tracer la courbe (C) ainsi que ses asymptotes.

Exercice N°8

Soit f la fonction définie sur R par $f(x) = \frac{e^{2x}}{1 + e^{2x}}$. On désigne par (ζ_f) sa courbe représentative dans un repère orthonormé R = (o, u, v). (Unité 2cm)

A)

1) a) Calculer
$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$$
. Interpréter les résultats obtenus.

- b) Montrer que f est dérivable sur IR et vérifier que f'(x) = $\frac{2e^{2x}}{(1+e^{2x})^2}$
- c) Dresser le tableau de variation de f.
- 2) Soit h(x) = f(x) x.
 - a) Dresser le tableau de variation de h.
 - b) Montrer que l'équation f(x) = x admet une unique solution $\alpha \in IR$ et vérifier que $\frac{1}{2} < \alpha < 1$
 - c) En déduire la position de (ζ_f) par rapport à la droite $\Delta : y = x$.
- 3) a) Montrer que le point $I(0, \frac{1}{2})$ est un centre de symétrie de (ζ_f) .
 - b) Déterminer une équation de la tangente T à (ζ_f) au point I.

B)

- a) Montrer que f admet une fonction réciproque f⁻¹ définie sur un intervalle J que l'on déterminera.
 - b) Etudier la dérivabilité de f⁻¹ sur l'intervalle J.
 - c) Déterminer une équation de la tangente T' à $(\zeta_{f^{-1}})$ au point d'abscisse 1/2
- 2) Expliciter $f^{-1}(x)$ pour x dans J.
- 3) Tracer dans le repère R les droites Δ , T et T' et les courbes (ζ_f) et $(\zeta_{f^{-1}})$.

Exercice N°9

Soit la fonction
$$f$$
 définie sur $[0, +\infty)$ par $\begin{cases} f(x) = x + x(\ln x)^2 \\ f(0) = 0 \end{cases}$

On désigne par (C) sa courbe représentative dans un repère orthonormé($0; \vec{i}, \vec{j}$) (unité : 4cm).

- 1)a) Montrer que f est continue à droite en 0.
- b) Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat obtenu.

- c) Montrer que f est dérivable sur $]0, +\infty[$ et que $f'(x) = (1 + lnx)^2.$
- d) Dresser le tableau de variations de f.
- 2)a) Ecrire une équation de la tangente T à (C) au point d'abscisse 1 .
- b) Etudier la position relative de (C) et T.
- c) Construire T et (C).
- 3) Soit la suite $(I_n)_{n\geq 1}$ définie par $I_n = \int_1^e x(Lnx)^n dx$
- a) A l'aide dune intégration par partie Calculer I1.
- b) Montrer que pour tout $n \ge 1$ on a : $I_{n+1} = \frac{e^2}{2} \frac{n+1}{2}I_n$
- 4) Soit A l'aire de la partie du plan limitée par la courbe (C) et les droites d'équations x=1, x=e et y=0. Calculer A en cm².

La confiance en soi est le premier secret du succès (RalphWaldo Emerson)

