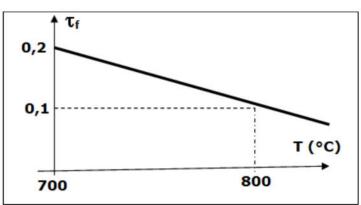
LycéeHamouda	Devoir de maison n: 1	PROF : NefziIssam
Becha	sciences physiques	
2019 - 2020	Durée : 2 heures	Classes : 4 ^{ème} M

Chimie: (7pts)

Exercice n: 1 (3,5pts)

La dissociation du bromure de nytrosyle NOBr est modélisée par l'équationsuivante :

2.NOBr (g) \longrightarrow 2.NO (g) + Br₂ (g) -1- A la température t_1 =700°C, on introduit 0,5mol de NOBr et 0,2mol de Br₂ dans un récipient fermé de volume V=10L.


A l'équilibre chimique la quantité de matière de NOBr est 0,4mol.

- -a- Montrer que le système évolue spontanément dans le sens direct.
- -b- Dresser le tableau descriptif d'évolution du système.

-c- Déterminer la valeur du taux d'avancement τ_{f1} de la réaction de dissolution de

NOBr a la température **T**₁.

- -2- Le système étant en équilibre, on varie la température la courbe ci-contre représente la variation du taux d'avancement final en fonction de la température (le volume et la pression sont maintenus constants).
- Déduire avec justification caractère énergétique de la réaction de dissolution de NOBr.

- -b- Donner la composition finale du mélange a T₂=800°C.
- -3- A température constante, comment faut-il modifier la pression pour diminuer la dissolution de NOBr? Justifier.

Exercice n: 2 (3,5pts)

Données: **pK**_A des couples acide / base :

- Acide méthanoïque HCOOH_(aq) / ion méthanoateHCOO -_(aq): pK_{A1} = 3,8
- Acide benzoïque C₆H₅COOH (aq)/ ion benzoate C₆H₅COO (aq): pK_{A2} = 4,2

Soit la réaction chimique suivante :

 $HCOOH_{(aq)} + C_6H_5COO_{(aq)} + C_6H_5COOH_{(aq)} + C_6H_5COOH_{(aq)}$

- -1--a- Exprimer la constante d'équilibre de cette réaction en fonction de pK_{A1} et pK_{A2} puis calculer sa valeur.
 - -b- Comparer par deux méthodes différentes la force des deux acides.
- -2- On dispose de solutions aqueuses d'acide méthanoïque et de benzoate de sodium de même concentration molaire **C** et de solutions aqueuses d'acide benzoïque et de méthanoate de sodium de même concentration molaire C'. On admettra que, dans leurs solutions aqueuses respectives:

 $[HCOOH (aq)] = C ; [C_6H_5COO^{-}(aq)] = C ; [C_6H_5COOH (aq)] = C'; [HCOO^{-}(aq)] = C'.$ On réalise un mélange formé d'un volume **v** de chacune des solutions indiquées ci-dessus.

- -a- Les concentrations molaires C et C', sont telles que C= 10⁻² mol.L⁻¹et
- C' = 5.10⁻³ mol.L⁻¹.Dans quel sens va évoluer spontanément le système chimique juste après le mélange des quatre solutions.
- -b- En gardant la même valeur de C, quelle valeur faudrait-il donner à C' pour que le système soit en équilibre à l'état initial ?

Physique: (13pts)

Exercice n: 1 (8,5pts)

On considère un circuit série formé par un GBF, un résistor de résistance \mathbf{R} , un condensateur de capacité \mathbf{C} et une bobine d'inductance \mathbf{L} de résistance \mathbf{r} .

Le GBF délivre une tension d'amplitude U_{max} constante, de fréquence N réglable et de valeur instantanée $u(t) = U_{max} \sin (2\pi N t)$.

- I) Un oscilloscope permet de visualiser simultanément les tensions $\mathbf{u}_{R(t)}$ et $\mathbf{u}_{C(t)}$ aux bornes respectivement du résistor et du condensateur.
- -1- Représenter le circuit électrique et faire les connexions à l'oscilloscope permettant de voir $\mathbf{u}_{R(t)}$ et $\mathbf{u}_{C(t)}$ respectivement sur ses voies \mathbf{Y}_1 et \mathbf{Y}_2
- **-2-** L'équation différentielle régissant les variations de l'intensité i du courant électrique dans le circuit s'écrit :

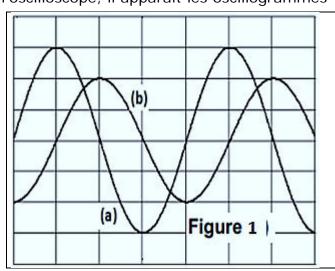
$$L\frac{di(t)}{dt} + (R+r)i(t) + \frac{1}{c}\int i(t) dt = u(t)$$

Cette équation admet une solution particulière de la forme :

$$i(t) = I_{max} \sin (2 \pi N t + \phi_i)$$

-a- Reproduire et compléter le tableau suivant :

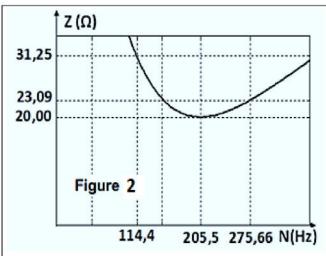
Tension	Expression de	Phase
électrique	l'amplitude	initiale
(R+r) i(t)		φi
$L \frac{di(t)}{dt}$		
$\frac{1}{c}\int i(t) dt$		


- -b- Faire, sans souci d'une échelle, la représentation de Fresnel relative aux tensions maximales dans le cas où le circuit est inductif.
- -c- Exprimer l'impédance ${\bf Z}$ du résonateur en fonction de ${\bf L}$, ${\bf N}$, ${\bf C}$, ${\bf R}$ et ${\bf r}$. En déduireson expression ${\bf Z_0}$ à la résonance d'intensité.
- **Il)** Pour une fréquence N_1 de N et sur l'écran de l'oscilloscope, il apparait les oscillogrammes de la figure (1)

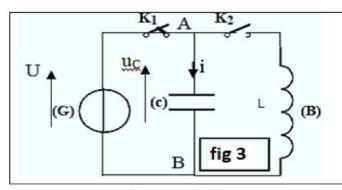
Réglage de l'oscilloscope :

- Balayage vertical:

 $VoieY_1: 2,0 V.div^{-1}; VoieY_2: 5,4 V.div^{-1}$


- Balayage horizontal : $\frac{\pi}{\sqrt{12}}$ ms.div⁻¹
- -1- Laquelle des deux courbes (a) et (b) celle qui correspond à $\mathbf{u}_{\mathbf{R}}$
- -2- En se servant des courbes de la figure (4), Déterminer;
- La fréquence N₁ du GBF.
 - Les tensions maximales \mathbf{U}_{Rm} et \mathbf{U}_{Cm} respectivement des tensions $\mathbf{u}_{R(t)}$ et $\mathbf{u}_{C(t)}$

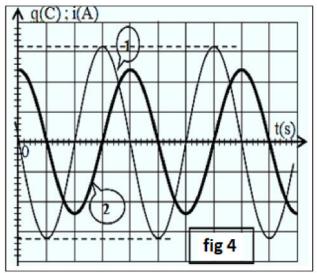
- -3- La courbe de la figure (2), représente les variations de l'impédance **Z** en fonction de la fréquence **N** du GBF.
- -a- Déterminer graphiquement la valeur de Z_0 et celle de la fréquence propre N_0 du résonateur.
 - -b- Pour la fréquence N₁.
- Donner la valeur de l'impédance Z₁ du résonateur.
- Préciser la nature inductive, capacitive ou résistive du circuit.
 - -c-Montrer que :


$$\label{eq:tg} \text{tg}(\phi_{\text{u}} - \phi_{\text{i}}) = \sqrt{\frac{Z_1^2}{Z_0^2} - 1} \text{et déduire la valeur de } \phi_{\text{i}}.$$

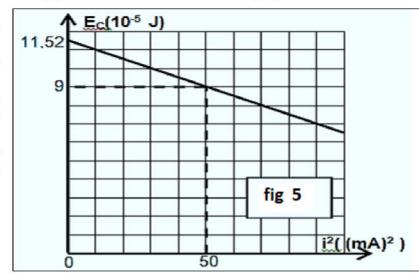
- -4- Montrer que L =0,015 H et déduire la valeur de C.
- -5- -a- Déterminer pour la fréquence N_1 l'intensité maximale \mathbf{I}_m du courant.
 - -b- En déduire les valeurs de R, de r et de Um.

Exercice n: 2(4,5 pts)

Un condensateur de capacité \mathbf{C} est chargé à l'aide d'un générateur de tension délivrant à ces bornes une tension constante $\mathbf{U}(\mathsf{K}_2 \text{ ouvert et } \mathsf{K}_1 \text{ fermé voir schéma ci-contre})$. Les armatures A et B de ce condensateur chargé sont reliées à une bobine d'inductance L de résistance négligeable. A un instant $\mathsf{t} = \mathsf{0}\mathsf{s}$, pris comme origine des temps on ouvre l'interrupteur K_1 et on ferme K_2 . L'intensité $\mathsf{i}(\mathsf{t})$ du courant est comptée positivement quand le courant circule dans le sens indiqué sur le schéma.


On appelle **q(t)** la charge del'armature reliée au point A et on précise qu'à l'instant t=0s cette armature est chargée positivement.

-1-


- -a- Etablir l'équation différentielle vérifiée par la charge **q(t)**.
- -b- Montrer que $\mathbf{q(t)} = \mathbf{Q_{max}sin(\omega_0t + \phi_q)}$ est une solution de cette équation différentielle pour une valeur particulière de ω_0 dont on déterminera l'expression.
- **-2-** On donne dans la figure 4, les courbes de variation de la charge **q(t)** du condensateur et de l'intensité de courant **i(t)** qui traverse le circuit.
 - -a- Identifier les courbes 1 et 2.
- -b- Déterminer l'expression de q(t) et celle de i(t).

On donne l'échelle :

- * pour la charge $q(t): 2.10^{-5} C \rightarrow 1$ carreau.
- * pour l'intensité de courant i(t) : 1,5 π mA \rightarrow 1 carreau.

- -3- -a- Donner l'expression de l'énergie totale E_{tot} du circuit en fonction de q, i, L et C.
- -b- Montrer que $\mathbf{E}_{Tot} = \mathbf{Ec(t)} + \mathbf{E_L(t)}$ est constante et qu'elle est égale à $\mathbf{Erreur!.LI_m}^2$.
- -c- Déterminer l'expression de E_c en fonction de i^2 .
- -d- sur la figure 5 on donne la courbe représentant l'évolution de l'énergie électrique $\mathbf{E_c}$ en fonction de $\mathbf{i^2}$. Déterminer graphiquement l'inductance \mathbf{L} , déduire la valeur de la capacité \mathbf{C} du condensateur.

