L. B. Monastir	4 ^{ème} Math
P.P. : Ali Zouhaïer	Séance n: 6
Chapitres: Suites réelles + isométries +	

EXERCICE 1 Vrai - Faux

1/ Les suites (u_n) et (v_n) définies sur IN^* par $u_n = 1 + \frac{1}{n^2}$ et $v_n = 1 - \frac{1}{n}$ sont adjacentes

2/ Si une suite (u_n) est convergente vers 1 alors la suite (v_n) définie par $v_n = (-1)^n u_n$ est convergente.

3/ Soit (u_n) une suite à termes strictement positifs tel que pour tout $n \in IN$; $u_{n+1} = u_n + \frac{1}{u_n}$ et $u_0 > 0$ alors (u_n) n'est pas majorée.

EXERCICE 2

Page : 1 Date: 03/01/2014

EXERCICE 6 d'après un devoir

Soit f_n la fonction sur IR par $f_n(x) = x^3 + x^2 - nx - 1$ où $n \in IN^* \setminus \{1\}$.

- 1/a- Montrer que f_n est dérivable sur IR puis résoudre f'(x) = 0. On notera α_n et β_n les solutions de cette équation avec $\alpha_n > 0$.

 - **b-** Calculer $\lim_{n\to +\infty} \alpha_n$. **c-** Montrer que $\alpha_n^2 = \frac{n-2\alpha_n}{3}$.
- **2/a** Dresser le tableau de variation de f_n sur IR^+ .
 - **b** Montrer que l'équation $f_n(x) = 0$ admet une unique solution x_n dans IR^+ .
 - **c** Montrer que pour tout $n \ge 2$; $\alpha_n < x_n < \sqrt{n}$. En déduire **lim** x_n .
- **3/a-** Comparer $f_{n+1}(x)$ et $f_n(x)$ pour $x \in IR^+$ et n > 1.
 - **b** En déduire que (x_n) est croissante.
- **4/a-** Montrer que pour tout $n \ge 2$; $n=x_n^2 + x_n \frac{1}{x_n}$.
 - **b** En déduire que $\lim_{n\to+\infty} \frac{\sqrt{n}}{x_n} = 1$

Date: 03/01/2014 Page: 2

EXERCICE 7

Soit la fonction $f: x \mapsto f(x) = \sqrt{x+3}$; $\forall x \ge 0$.

1/a- Donner le tableau de signe de f''(x); $\forall x \ge 0$.

b- La courbe de f admet-elle des points d'inflexions ?

- **2**/ Montrer que $\forall x \ge 0$; $0 < f'(x) \le \frac{1}{2}$.
- **3**/ Déterminer le réel α solution de l'équation f(x) = x
- **4**/ Soit la suite (u_n) définie sur IN par $u_0 = 0$ et $u_{n+1} = f(u_n)$; $\forall n \in IN$
 - **a** Montrer que $\forall n \in IN; u_n \prec \alpha$.
 - **b** Prouver que $\forall n \in IN$; $0 < \alpha u_{n+1} \leq \frac{1}{2}(\alpha u_n)$.
 - **c** Déduire que $\forall n \in IN$; $0 < \alpha u_n \le \alpha \left(\frac{1}{2}\right)^n$.
 - **d** Prouver que (u_n) converge.

EXERCICE 8

ABCD est un carré direct de centre O. Soit f une isométrie transformant A en C et B en D.

- 1/ Prouver que f ne peut pas avoir une droite fixe point par point.
- **2**/ Supposons que f possède un seul point fixe. Prouver que f ne peut être que la rotation de centre O et d'angle π .
- 3/ Supposons que f n'a pas de point fixe. Prouver que *f* n'est pas une translation.

EXERCICE 9

Soit dans le plan P un carré direct ABCD de centre I.

Soient les applications définies de P dans P par :

$$f = R_{\left(I, \frac{\pi}{2}\right)} \circ R_{\left(A, \frac{\pi}{2}\right)}$$
 et $h = r_{\left(B, \frac{\pi}{2}\right)} \circ S_{(AD)}$.

- 1/ Caractériser l'application f.
- **2/a)** Déterminer la droite Δ telle que $r_{\left(B,\frac{\pi}{2}\right)} = S_{\left(BD\right)} \circ S_{\Delta}$.
 - **b**) Caractériser alors *h*.
- **3**/ Soit l'application φ définie de P dans P par : $\varphi = S_{(BD)} \circ t_{\overrightarrow{AC}} \circ S_{(AC)}.$
 - a) Déterminer l'image de A par φ .
 - **b**) Déterminer la nature et les éléments caractéristiques de φ .

EXERCICE 10

ABC est un triangle équilatéral. Soit f l'isométrie qui n'a pas de point fixe et qui transforme A en B et B en C.

- 1/a) Prouver que f n'est pas une translation.
 - b) Déduire la nature de f.
- **2**/ Posons $g = f \circ f$, D le point tel que ABDC est un parallélogramme et E le point tel que ABCE est un parallélogramme.
 - a) Déteminer g(A) et g(B).
 - **b**) Prouver que g n'a pas de point fixe.
 - c) Déduire les natures possibles de g.
- **3**/ Posons $h = t_{\overrightarrow{RA}} \circ f$.
 - a) Montrer que h est une isométrie qui fixe A et différente de l'identité du plan.
 - b) Montrer que h ne peut pas être une rotation de centre A
 - c) Caractériser donc l'application h.

Page : 3 Date: 03/01/2014

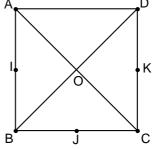
EXERCICE 11

Dans la figure ci-contre:

• ABCD est un carret direct de centre O

•
$$I = A * B$$
; $J = B * C$ et $K = C * D$

1/a- Montrer qu'il existe une seulle rotation f telle que f(C) = J et f(J) = O. Déterminer l'angle de f.



b- Déterminer $f \circ f$ en déduire que f est une rotation de centre $\Omega = O * C$.

2/a- Préciser f(O) en déduire f(I) (on remarque que $\overrightarrow{CJ} = \overrightarrow{OI}$).

b- Quelle est la nature du triangle ΩID ?

3/ On pose $g = t_{\overrightarrow{CI}} \circ f$, $h = S_{(BD)} \circ g$ et $\varphi = h \circ S_{(AB)}$.

a- Préciser g(O) puis caractériser g en déduire l'image du carré ABCD par g.

b- Préciser h(O) et h(J) puis caractériser h et φ .

EXERCICE 12

Le plan complexe P est rapporté à un repère orthonormé direct $(O; \vec{u}; \vec{v})$.

1/Soit $f: P: \rightarrow P; M(z) \mapsto M'(z')$ tel que z' = -iz + 2i.

a- Prouver que f est une isométrie qui possède un seul point fixe

b- Préciser alors la nature et les éléments caractéristiques de *f*.

2/ Soit $h = f \circ S$ avec S la symétrie orthogonale d'axe $(O; \vec{u})$

a- Montrer que f est une isométrie.

b- Soit M(z) d'image M'(z') par h. Exprimer z' en fonction de z.

c- En déduire la nature de h.

3/ Posons $g = S \circ h$. Montrer que g est une translation que l'on caractérisera.

NetSchool 1

Page : 4 Date: 03/01/2014