L. B. Monastir

4 ème Math

P.P.: Ali Zouhaïer

Séance n: 3

Chapitres: Suites réelles + Complexe + Dérivabilité + isométrie + ...

EXERCICE 1

1/ Si
$$\left[f\left(\frac{1}{\sqrt{x}}\right) \right]' = \frac{1}{x^4} \ alors \ f'(t) = -t^2$$

2/ La fonction $f: x \mapsto (5-x)\sqrt{5-x}$ est dérivable à gauche en 5

3/ Soit
$$h: \left[0; \frac{\pi}{3}\right] \to IR, x \mapsto x \cos\left(\frac{\pi}{4} + x\right) \sin\left(2x + \frac{\pi}{3}\right).$$

La courbe de *h* admet au moins deux tangentes horizontales

EXERCICE 2

Soit f: $x \mapsto f(x) = 1 + x + x^2 - x^3 + x^4$

1/ La courbe de f admet-elle des points d'inflexions ?

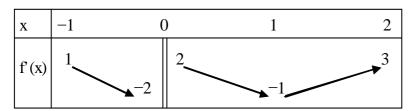
2/ Montrer que $\forall x \in [0; 10^{-1}]; 0 \le f'(x) \le 1,174$

3/ En déduire que $\forall x \in \left[0; \frac{1}{10}\right]$; $1 \le f(x) \le 1 + 1,174x$

EXERCICE 3

Omar Al Khayam n:98

Soit f une fonction dérivable sur $[-1;0[\cup]0;2]$ dont le tableau de variation de f' est le suivant:



On désigne par C_f sa représentation graphique dans un repère orthogonal.

- 1/ Déterminer le nombre des tangentes à C_f parallèles à la droite d'équation $y=\frac{1}{2}x$. Justifier.
- **2**/ Montrer que pour tout a et b de l'intervalle [0;2] on a $|f(b)-f(a)| \le 3|b-a|$

Exercice 4

Dans la figure ci-dessous: C' la courbe représentative de f' la fonction dérivée de f de courbe C passant par par le point A(0; f(0) = 2).

f est deux fois dérivable sur $\left[-\frac{3}{2};2\right]$.

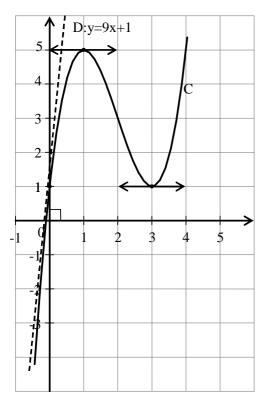
Page : 1 Date: 03/01/2014

$$y = x + 2$$

- **b** Donner une valeur approchée de f(0,001)
- **2**/ Expliquer puis donner le tableau de signe de (f(x) 2) pour $x \in \left[-\frac{3}{2}; 2 \right]$
- 3/a- Montrer que le point A(0;2) n'est pas un point d'inflexion de C.
 - **b** Montrer que C admet deux points d'inflexions.
- **4**/ Sachant que $f\left(-\frac{3}{2}\right) = 0$ montrer que $\forall x \in \left[-\frac{3}{2}; 2\right]$; $|f(x)| \le 3x + \frac{9}{2}$.

Exercice 5

Dans la figure ci-dessous la courbe C d'une fonction f dérivable sur IR D:y=9x+1 est la tangente à C en sont point A d'abscissse 0



- 1/ Déterminer en justifiant la valeur de f'(1).
- **2**/ Déterminer f(0)
- 3/ Prouver que $\lim_{x\to 0} \frac{f(x)-1}{x} = \dots$
- 4/ Déterminer $\lim_{x \to -\infty} \frac{f(x)}{x}$, justifier votre réponse.
- **5**/ Soit la fonction g: $x \mapsto f(\cos(x)); \ \forall x \in \left[0; \frac{\pi}{2}\right].$
 - **a** Prouver que g est dérivable sur $\left[0; \frac{\pi}{2}\right]$.
 - **b** Déterminer en justifiant le signe de g'(x); $\forall x \in \left[0; \frac{\pi}{2}\right]$
 - **c** Donner une équation de Δ la demi tangente à la courbe de g en son point d'abscisse $\frac{\pi}{2}$.

EXERCICE 6

Soit x un réel de IR_+^* . Pour tout t de [0,x] on pose

$$\varphi(t) = \sin(x) - \sin(t) - (x - t)\cos(t) - \frac{[\sin(x) - x]}{x^2} \cdot (x - t)^2$$

- 1) Ecrire l'expression de $\varphi'(t)$ pour tout t de]0,x[.
- **2)a**/ Vérifier que $\varphi(0) = \varphi(x)$
 - **b**/ En déduire qu'il existe un réel $c \in]0,x[$ tel que $\varphi'[c] = 0.$
- 3) Déduire de ce qui précède que le réel c vérifie: $\sin(x) = x \frac{x^2}{2}\sin(c)$.

NetSchool 1

Date: 03/01/2014

Page: 2

4) Calculer enfin $\lim_{x\to 0^+} \frac{\sin(x)-x}{x^2}$.

EXERCICE 7

Soit la fonction $f: x \mapsto f(x) = \sqrt{x+3}$; $\forall x \ge 0$.

1/a- Donner le tableau de signe de f''(x); $\forall x \ge 0$.

b- La courbe de f admet-elle des points d'inflexions ?

2/ Montrer que $\forall x \ge 0$; $0 < f'(x) \le \frac{1}{2}$.

3/ Déterminer le réel α solution de l'équation f(x) = x

4/ Soit la suite (u_n) définie sur IN par $u_0 = 0$ et $u_{n+1} = f(u_n)$; $\forall n \in IN$

a- Montrer que $\forall n \in IN; u_n \prec \alpha$.

b- Prouver que $\forall n \in IN$; $0 < \alpha - u_{n+1} \leq \frac{1}{2}(\alpha - u_n)$.

c- Déduire que $\forall n \in IN$; $0 < \alpha - u_n \le \alpha \left(\frac{1}{2}\right)^n$.

d- Prouver que (u_n) converge.

EXERCICE 8 Vrai - Faux

1/ Soient ABC est un triangle équilatéral et f est une isométrie telle que f(A) = B et f(B) = C.

a) f est une symétrie orthogonale

b) Si f n'a pas de point fixe alors f est une symétrie glissante

c) Si f n'est pas une symétrie glissante alors f est une rotation

2/ Soit Δ une droite et \overrightarrow{u} un vecteur de direction orthogonale à celle de Δ . On a f= $t_{\overrightarrow{u}} \circ S_{\Delta}$ est une rotation.

3/ Soient Δ , Δ' et Δ'' telles que $\Delta//\Delta'$ et $\Delta \perp \Delta''$. On a $S_{\Delta} \circ S_{\Delta'} \circ S_{\Delta''} = S_{\Delta''} \circ S_{\Delta} \circ S_{\Delta'}$

EXERCICE 9

EXERCICE 10

ABC est un triangle équilatéral. Soit f l'isométrie qui n'a pas de point fixe et qui transforme A en B et B en C.

1/a) Prouver que f n'est pas une translation.

b) Déduire la nature de f.

2/ Posons $g = f \circ f$, D le point tel que ABDC est un parallélogramme et E le point tel que ABCE est un parallélogramme.

a) Déteminer g(A) et g(B).

b) Prouver que g n'a pas de point fixe.

3/ Posons $h = t_{\overrightarrow{BA}} \circ f$.

 a) Montrer que h est une isométrie qui fixe A et différente de l'identité du plan.

b) Montrer que h ne peut pas être une rotation de centre A

c) Caractériser donc l'application h.

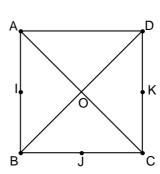
EXERCICE 11

Dans la figure ci-contre:

• ABCD est un carret direct de centre O

•
$$I = A * B$$
; $J = B * C$ et $K = C * D$

1/a- Montrer qu'il existe une seulle rotation f telle que f(C) = J et f(J) = O. Déterminer l'angle de f.



b- Déterminer $f \circ f$ en déduire que f est une rotation de centre $\Omega = O * C$.

2/a- Préciser f(O) en déduire f(I) (on remarque que $\overrightarrow{CJ} = \overrightarrow{OI}$).

b- Quelle est la nature du triangle ΩID ?

3/ On pose $g = t_{\overrightarrow{CI}} \circ f$, $h = S_{(BD)} \circ g$ et $\varphi = h \circ S_{(AB)}$.

a- Préciser g(O) puis caractériser g en déduire l'image du carré ABCD par g.

b- Préciser h(O) et h(J) puis caractériser h et φ .

EXERCICE 12

ADBK est un rectangle de centre I tel que

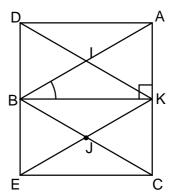
$$\widehat{\left(\overrightarrow{BK};\overrightarrow{BA}\right)} \equiv \frac{\pi}{6} [2\pi]. \ \mathsf{C=S}_{(BK)}(A)$$

$$J=B*C = K*E. B'=S_{(AD)}(B).$$

Soit f l'isométrie qui n'a pas de point fixe et qui transforme A en B et B en C.

1/a- Prouver que ABC est équilatéral.

b- Prouver que (*IJ*) est la médiatrice de [*KB*].



2/ Prouver que f n'est pas une translation. Déduire la nature de f.

3/ Montrer que f(I) = J et f(K) = E

4/ Soit l'isométrie $\varphi = f \circ S_{(IJ)} \circ t_{\overrightarrow{II}}$

a) Déterminer $\varphi(J)$ et $\varphi(C)$ et $\varphi(E)$

b) Déduire que $f = t_{\overrightarrow{II}} \circ S_{(IJ)}$.

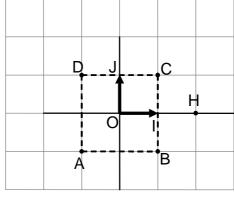
EXERCICE 5 D'après un devoir

On donne dans le plan complexe rapporté au repère orthonormé direct $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ la figure ci-contre.

1/ Soit f l'isométrie du plan tel que f(C) = B, f(A) = D et f(D) = C

a) Déterminer f(O) et $f \circ f(D)$.

 b) En déduire que f est une rotation dont déterminera le centre et l'angle.



2/ Soit g : P \rightarrow P; M(z) \rightarrow M'(z') avec z' = $-i\overline{z}$ + (1 + i)

a) Montrer que g est une isométrie du plan .

b) Déterminer g(I) et g(J), en déduire la nature de g.

c) Déterminer g(O), g(H) et g(B).

3/ Soit h : P \rightarrow P; M(z) \rightarrow M'(z') avec z' = $-i\overline{z} + 2$

 ${\bf a})$ Montrer que h est une isométrie du plan .

b) Déterminer h(C), h(D) et h(O).

c) En déduire que h n'a pas des points invariants, puis déterminer sa nature.

d) Vérifier que h = $g \circ t_{\overrightarrow{OB}}$.

4/ Déterminer $h^{-1} \circ f(D)$ et $h^{-1} \circ f(C)$, puis la nature de $h^{-1} \circ f$.

Page : 4 Date: 03/01/2014

