REPUBLIQUE TUNISIENNE LYCEE SECONDAIRE MINISTERE DE L'EDUCATION KALAAT SINAN - DEVOIR DE CONTROLE N°3-SECTION: MATHEMATIQUES EPREUVE: MATHEMATIQUES DUREE: 2h Mr: Hamadí Med Alí

NB: Le plan est rapporté à un repère Orthonormé direct (O, 1, 1)

3 points QCM: Choisir la réponse exacte (sans justification): Exercice nº 01

- 1. Soit $n \in \mathbb{Z}^*$ tel que $(5n) \land (3^2 \times 5^3 \times 7) = 45$. Alors :a) $n = 0 \pmod{9}$ b) $n = 0 \pmod{5}$ c) $n = 0 \pmod{7}$.
- 2. Le reste modulo 7 de 32 ²⁰¹² est : a) 0.
- c) 2.
- 3. $\lim_{x \to +\infty} x^{2012} e^x$. est égale à : a) + ∞ .

- 3. $\lim_{x \to +\infty} x^{2012} e^x$. est égale à : a) $+\infty$. b) $-\infty$. c) (4. $\int_0^{\ln 2} \frac{e^t}{(1+e^t)^2} dt$ est égale à : a) $\frac{1}{6}$. b) $\frac{1}{1+e}$. c) $\ln \frac{3}{2}$.

Exercice n°02

5 points

Soit l'équation (E) : 11 x - 40 y = 18.

- 1. a- Affirmer que (E) admet des solutions dans $Z \times Z$.
 - b- Résoudre dans $Z \times Z$ l'équation (E), sachant que (-2, -1) est une solution particulière.
- 2. Soit $n \in \mathbb{Z}$. Montrer que n est solution de (S) : $\begin{cases} n \equiv 1 \pmod{5} \\ n \equiv 2 \pmod{8} \end{cases} \Leftrightarrow n \equiv 26 \pmod{40}.$
- 3. Soit le couple d'entiers (a, b) solution de (E) et $d = a \wedge b$
 - a- Donner les valeurs possibles de d.
 - b- Résoudre dans $Z\times Z$ l'équation : 11 a 40 b = 18 sachant que d = 2.
- 4. Une comète A passe tous les cinq ans a été observée l'année dernière. Une comète B passe tous les huit ans et a été observée il y a deux ans. Une comète C passe tous les onze ans et a été observée il y a huit ans. Quelle est la prochaine fois où on pourra observer ces trois comètes la même année?

Exercice v '03 | 5 points | Dans un atelier de couture on sait que 20% des machines sont sous garantie.

Parmi les machines garantie 1% sont défectueuses. Parmi les machines qui ne sont pas sous garantie 10% sont défectueuses.

On considère les évènements suivants : G :« La machine est sous garantie» et D:« La machine est défectueuse ».

On choisi une machine au hasard.

- Dessiner un arbre de choix.
- 2. Déterminer la probabilité pour que la machine soit sous garantie et défectueuse.
- 3. Déterminer la probabilité pour que la machine soit défectueuse.
- 4. On voit que la machine est défectueuse, quelle est la probabilité pour qu'elle soit sous garantie.
- 5. On choisi successivement et avec remise cinq machines. Calculer la probabilité des évènements :
 - A: « Obtenir au moins deux machines sous garantie».
 - B: « Seule la deuxième machine est sous garantie».
 - C :« La machine sous garantie apparait pour la première fois au troisième choix».

Exercice n°04 Foints Soit la fonction f définie sur $[1, +\infty[$ par $f(x) = e^{-\sqrt{x-1}}$ et (C) sa courbe représentative.

- 1. a- Etudier la dérivabilité de f à droite en 1. Interpréter graphiquement le résultat obtenu.
 - b-Dresser le tableau de variation de f et tracer sa courbe (C).
- 2. Soit la fonction F définie sur $]0, +\infty[$ par $F(x) = \int_1^{1+\ln^2 x} e^{-\sqrt{t-1}} dt.$
 - a- Montrer que F est dérivable sur $]0, +\infty[$ et que F' $(x) = \frac{2 \ln x}{x} e^{-|\ln x|}$, pour tout $x \in]0, +\infty[$.
 - b- Calculer F(1) et montrer que $F(x) = F(\frac{1}{x})$ pour tout $x \in]0, +\infty[$.
 - c- Calculer F (x) pour tout $x \in [0, +\infty[$.
- 3. Calculer les intégrales suivantes : $A = \int_1^2 e^{-\sqrt{t-1}} dt$ et $B = \int_2^5 e^{-\sqrt{t-1}} dt$.
- 4. Pour tout $\alpha \ge 1$, on désigne par S (α) l'aire de la partie du plan limitée par la courbe (C) et les droites d'équations respectives : x = 1, $x = \alpha$ et y = 0.
 - a- Montrer que S (α) = F (f(α)).
 - b- Calculer S (α) et $\lim_{\alpha \to +\infty}$ S (α).

