LYCEE THELEPTE

DEVOIR DE SYNTHESE N°2

Enseignant: H.Salem

4 ème Mat h						
reuve : Mathématiques						
ÁO : 2h A .\$: 2010 -2011	1					

Exercice 1: (3 pts)

Pour chacune des questions suivantes, une et une seule des trois propositions est exacte. Indiquer sur la copie le numéro de la question et la lettre qui correspond à la réponse exacte Aucune justification n'est demandée. Une réponse exacte rapporte 1 point, une réponse fausse 0 point.

- Dans la figure ci-contre, (C) est la courbe d'une fonction f définie sur ℝ par :
 - $f(x) = a^x$ alors α est égale à :
 - a) 0,2
 - b) 1,2
 - C) 2
- 2) L'espace est rapporté à un repère orthonormé direct $(0, \vec{l}, \vec{j}, \vec{k})$. L'image du

plan Q: x + y - z + 2 = 0 par la translation du vecteur \vec{k} a pour équation :

a)
$$x + y - z + 1 = 0$$

a)
$$x + y - z + 1 = 0$$
; b) $x + y - z + 3 = 0$; c) $x + y - z = 0$

c)
$$x + y - z = 0$$

3) $\lim_{x\to+\infty} \frac{\ln x}{x^{0,0001}}$ est égale à :

a)
$$+\infty$$
 ; b) $-\infty$; c) 0

Exercice 2: (3 pts)

On étudie la croissance d'une culture dans un milieu liquide non renouvelé en mesurant la quantité N de liquide absorbé en millilitre à divers instant X, l'unité étant l'heure, on obtient le tableau suivant où Y = In N désigne le logarithme népérien de N.

Х	0	0,5	1	1,5	2
Y = In N	9,1	9,25	9 ,30	9,40	9,60

- 1) Représenter le nuage de points de cette série.
- 2) Calculer le coefficient de corrélation entre X et Y et vérifier qu'il ya une forte corrélation linéaire entre ces deux variables.
- 3) a) Donner une équation de la droite D de régression de Y en X.

b) Donner une estimation de la quantité de liquide N absorbée au bout de cinq heures.

Exercice 3: (4 pts)

Pour tout $\ \mathbf{n} \in \ \mathbb{N}^*$, on pose $\mathbf{I}_n = \ \int_1^e rac{(lnx)^n}{x^2} \, dx$.

- 1) a) Montrer que $I_1 = 1 \frac{2}{e}$.
 - b) Montrer que la suite (\mathbf{I}_n) est décroissante et en déduire qu'elle est convergente.
- 2) a) Montrer que pour tout $n \in \mathbb{N}^*$, et pour tout $x \in [1, e]$ on a :

$$\frac{(\ln x)^n}{xe} \le \frac{(\ln x)^n}{x^2} \le \frac{(\ln x)^n}{x}$$

- b) M ontrer alors que pour tout $\mathbf{n} \in \mathbb{N}^*, \frac{1}{(n+1)e} \leq \mathbf{I}_n \leq \frac{1}{(n+1)}$. En déduire $\lim_{n \to +\infty} \mathbf{I}_n$
- 3) a) montrer à l'aide d'une intégration par partie que pour tout $n \in \mathbb{N}^*$, on a:

$$I_{n+1} = (n+1)I_n - \frac{1}{6}$$

- b) montrer par récurrence que pour tout n $\in \mathbb{N}^*, \frac{1}{n!} \mathbf{I}_n = 1 \frac{1}{e} \sum_{k=0}^n \frac{1}{k!}$
- c) En déduire $\lim_{n\to+\infty}\sum_{k=0}^n\frac{1}{k!}$.

Exercice 4: (5 pts)

L'espace est rapporté à un repère orthonormé direct $(0, \vec{t}, \vec{j}, \vec{k})$. On donne les points A(3,1,0), B(1,2,0), C(3,2,1) et D(0,0,m) où m est un réel positif.

- 1) a) Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - b) En déduire l'aire du triangle ABC.
 - c) Déterminer une équation cartésienne du plan P passant par les points A, B et C.
 Vérifier que D ∉ P.
- 2) Déterminer en fonction de m le volume du tétraèdre ABCD.
- 3) Soit \mathbf{S}_m l'ensemble des points $\mathbf{M}(x,y,z)$ tels que $x^2+y^2+z^2-2mz+m^2-9=0$. Montrer que pour tout $m\in\mathbf{IR}_+$, \mathbf{S}_m est une sphère dont on précisera le centre et le rayon.

- 4) a) Montrer que S_m est tangente à P si et seulement m=2. Montrer dans ce cas que la droite (DB) est perpendiculaire au plan P.
 - b) En déduire le point de contact de S_2 et $\mbox{\bf P}.$

Exercice 3: (5 pts)

Soit f la fonction définie sur IR par $f(x) = \frac{1}{(1+e^{-x})^2}$

- 1) a) Montrer que f est une bijection de IR sur un intervalle I que l'on précisera.
 - b) Montrer que pour tout $x \in I$, $f^{-1}(x) = ln(\frac{\sqrt{x}}{1-\sqrt{x}})$.
 - c) Calculer $f^{-1}\left(\frac{1}{4}\right)$.
- 2) On a tracer la courbe représentative (C) de f et la droite $\Delta: y = x$ dans un repère orthonormé (O, \vec{t}, \vec{j}). Tracer soigneusement la courbe (C) de f^{-1} dans le même repère.
- 3) a) Vérifier que pour tout $x \in \mathbb{R}$, $f(x) = \frac{e^x}{1+e^x} \frac{e^x}{(1+e^x)^2}$.
 - b) On désigne par $\mathcal A$ l'aire de la partie du plan limitée par la courbe (C) et les droites = 0, $x = \alpha$ et $y = \alpha$.

Montrer que
$$\mathcal{A}=\alpha^2-\ln(\frac{1+e^{\alpha}}{2})-\frac{1}{1+e^{\alpha}}+\frac{1}{2}$$
. En déduire $\int_{\frac{1}{4}}^{\alpha}\ln\left(\frac{\sqrt{x}}{1-\sqrt{x}}\right)dx$.

c) Déterminer en fonction de α l'aire \boldsymbol{B} de la partie du plan limitée par les courbes (C), (C') et les deux axes du repère.



