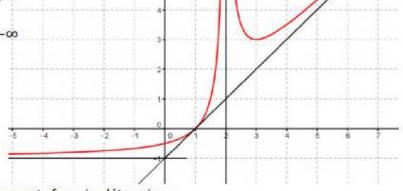
Lycée Ebn Elhaythem Matmata N Mr : Kayel : M 27/10/2016 4Maths 2heures Devoir de contrôle N°: 1 Mathématiques

> Exercice 1:

Le graphique ci-dessous (C) est la représentation graphique dans un repère orthonormé d'une fonction f définie sur IR\{2}.

- ✓ La droite $\Delta : y = x 1$ est une asymptote à (C) au voisinage de $+\infty$
- ✓ La droite $\Delta' : y = -1$ est une asymptote à (C) au voisinage de $-\infty$
- ✓ La droite d'équation x = 2 est une asymptote verticale à (C)



1. A l'aide du graphique et des renseignements fournis, déterminer

a.
$$\lim_{x \to -\infty} f(x)$$
; $\lim_{x \to -\infty} \frac{f(x)}{f(x)+1}$

b.
$$\lim_{x \to +\infty} f(x)$$
 ; $\lim_{x \to +\infty} \frac{x}{f(x)}$; $\lim_{x \to +\infty} \frac{1}{f(x) - x}$: $\lim_{x \to 2} \frac{(f \circ f)(x)}{f(x)}$

c.
$$\lim_{x\to 2} f(x)$$
. En déduire $\lim_{x\to +\infty} f(\frac{2x+1}{x-1})$

- 2. Soit la fonction $g: x \mapsto \frac{1}{\sqrt{x}}$ et $h = g \circ f$
 - a. Déterminer l'ensemble de définition de h .
 - b. Montrer que h est prolongeable par continuité en 2

Exercice N°2

Soit n un entier naturel non nul, f_n la fonction définie sur $[0,\frac{\pi}{2}[$ par : $f_n(x) = x + n - n \tan(x)$

- 1/ a)étudier les variations de f_n sur $[0,\frac{\pi}{2}]$
 - b) en déduire que l'équation, $f_n(x) = 0$ admet une seule solution α_n dans $[0, \frac{\pi}{2}]$
 - c) vérifier que $\alpha_n \in]\frac{\pi}{4}, \frac{\pi}{2}[$ et que $: tan(\alpha_n) = 1 + \frac{\alpha_n}{n}$

2/on définit la suite (α_n) pour $n \in IN^*$

- a) montrer que pour tout $x \in J^{\frac{\pi}{4}}, \frac{\pi}{2}$ [et pour tout $n \in IN^*$ on a : $f_{n+1}(\alpha_n) < f_n(\alpha_n)$
- b) déduire alors que (α_n) est décroissante
- c) prouver que (α_n) est convergente et calculer sa limite

Exercice N°3

Soit (O, \vec{U} , \vec{V}) un repère orthonormé et pour tous Z $\in \mathbb{C}\setminus\{i\}$, on définit l'application;

$$f(z) = i \, (\frac{z - 2i}{z - i} \,) \qquad ; \quad \text{soit les points} \quad \text{M} \quad , \quad \text{A et B} \quad \text{d'affixes Z} \; , \; \text{2i et i}$$

1/a)montrer que $\forall Z \in \mathbb{C} \setminus \{i\}$ on a : $|f(z)| = \frac{AM}{BM}$

b) montrer que
$$\forall Z \in \mathbb{C} \setminus \{2i, i\}$$
 on a : $\arg(f(z)) \equiv (\widehat{BM}, \widehat{AM}) + \frac{\pi}{2}[2\pi]$

2/ déterminer les deux ensembles suivants

$$E = \{ M(Z) \text{ tels que } | f(z) | = 1 \} \text{ et } F = \{ M(Z) \text{ tels que } f(Z) \text{ est imaginaire pur } \}$$

3/ montrer que
$$\forall Z \in \mathbb{C} \setminus \{i\}$$
 on a : $|f(z) - i| = \frac{1}{|Z - i|} et \arg(f(z) - i) \equiv -\arg(Z - i) [2\pi]$

4/ a)montrer que si M $\in \mathcal{C}(B, \frac{1}{2})$ alors le point M'd'affixe f(Z) appartient à un cercle que l'on précisera

b) construire alors le point M' a partir du point M (avec justification)

Exercice On considère dans C l'équation

$$(E_{\theta}): z^2 - 2i\sin(2\theta)z - 1 = 0$$

où θ est un réel donné.

- 1- Vérifier que $e^{2i\theta}$ est une solution de (E_{θ}) puis déduire la deuxième solution (On pourra l'écrire sous forme exponentielle).
- 2- Résoudre dans € l'équation :

$$(E'_{\theta}): z^4 - 2i\sin(2\theta)z^2 - 1 = 0$$

où θ est un réel donné.(On donnera les solutions sous forme exponentielle)

3— Montrer que les images dans le plan complexe des solutions de (E'_{θ}) sont les sommets d'un rectangle.

Bon travail

