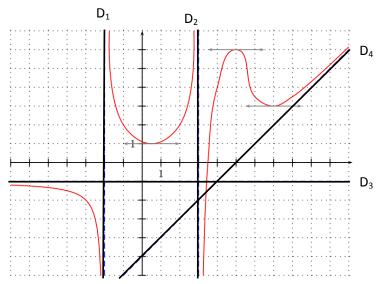
Chaabane mounir


2heurs

3 économie

Exercice n°1(7 points)

Dans le plan muni d'un repère (o , I , G) ; on donne la courbe représentative d'une fonction

On a tracé sur le graphique les droites D_1 ; D_2 ; D_3 et D_4

- 1- Par lecture graphique déterminer
 - a- Le domaine de définition de f : D_f
 - b- Les équations des droites D₁; D₂; D₃ et D₄

$$\operatorname{C-} \lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$\lim_{x \to -2^-} f(x) =$$

$$\lim_{x \to -2^+} f(x) =$$

$$\lim_{x \to 3^{-}} f(x) =$$

$$\lim_{x \to 3^+} f(x) =$$

$$\lim_{x \to +\infty} f(x) - (x - 5) =$$

- d- D'après les résultats précédents préciser les asymptotes et leurs natures
- e- Déterminer

$$\lim_{x \to +\infty} \frac{f(x)}{x} =$$

$$\lim_{x \to -\infty} \frac{f(x)}{x} =$$

- $\lim_{x \to +\infty} \frac{f(x)}{x} =$ 2- Etablir le tableau de variation de f
- 3- Résoudre f(x) < 0

Exercice n ° 2 (6 points)

Soit la fonction définie par $f(x) = \frac{x^2 + 3x + 1}{x - 1}$ et C_f sa courbe représentative dans le plan muni d'un repère (O ,I ,J)

1- Déterminer Le domaine de définition de f : D_f

$$\lim_{x\to 1^{-}}f(x) =$$

$$\lim_{x \to 1^+} f(x) =$$

b- interpréter les résultats graphiquement

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x\to +\infty} f(x) =$$

b- montrer que
$$f(x) = (x + 4) + \frac{5}{x-1}$$

c- en déduire que la courbe représentative C_f admet une asymptote oblique D dont on donnera une équation.

d- Etudier la position de Cf par rapport à D

Exercice n ° 3 (6 points)

On considère la suite U_n définie sur IN par

$$\begin{cases} U_0 = 4 \\ U_{n+1} = \frac{1}{2}U_n + 1 \end{cases}$$

- a) Calculer U_1 et U_2 .
- b) Vérifier que la suite $\,U_n\,$ n'est ni arithmétique , ni géométrique
- 2- Soit V_n La suite définie par $V_n = U_n 2$
- . a) Montrer que $\,V_{n}\,\,$ est une suite géométrique de raison q= 1/2
- b) Exprimer V_n puis U_n en fonction de n.
- c) déterminer la limite de V_n et en déduire la limite de U_n

