

 3^{eme} E- G_2

Date: le 29/05/2006

Coefficient: 3

Devoir de Synthèse N°3 Mathématiques

Lycée Secondaire Teboulba

Exercise 97°1: (7 points)

Une urne contient neuf boules indiscernables au toucher:

5 boules Rouges numérotées: 1, 2, 2, 2, 2

et 4 boules Noires numérotées : 1, 1, 1, 2.

1-/ On lire simultanément 3 boules de l'urne.

Déterminer la probabilité des événements paisonts :

 \mathfrak{A} : « 3 boules portant le même numéro ».

B: « 3 boules de même couleurs ».

 \mathcal{C} : « les 3 boules tirées sont de même couleurs et portent le même numéro ».

 \mathfrak{D} : « une seule boule rouge portant le numéro 2 ».

 \mathcal{E} : « obtenir une seule boule rouge et une seule boule parte le numéro 2 ».

F: « au moins une boule Noire ».

2-/ On lire successivement et sans remise 3 boules de l'urne.

Déterminer la probabilité des événements suivants :

9 : « obtenir 2 boules Noires ».

 \mathcal{H} :« obtenir une boule numérotée 1 pour la première fois au $2^{\mathsf{ème}}$ tirage ».

Exercice $\mathfrak{N}^{\circ}2:$ (5 points)

Soil f une fonction définie par : $f(x) = \frac{1 - Cosx}{xSinx}$

1. a) Déterminer D_f le domaine de définition de f.

b) Calculer
$$\lim_{x\to 0} f(x)$$
 et $\lim_{x\to 0} \frac{f(x)}{x}$.

2. Montrer que f est une fonction paire.

3. Montrer que pour
$$x \in D_f$$
; $f'(x) = \frac{(x - Sinx)(1 - Cosx)}{x^2 Sin^2 x}$

Voir verso

Exercice 97°3: (8 points)

Soit la fonction f définie par : $f(x) = \frac{x^2 + 2x - 2}{x - 1}$.

On désigne par $\mathscr C$ la courbe représentative de f dans un repère orthonormé $\mathcal R=(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j}$.

- 1. Soit f' la fonction dérivée de f . Calculer f'(x) .
- 2. Dresser le tableau de variation de f.
- 3. Montrer que $f(x) = x + 3 + \frac{1}{x-1}$ pour tout $x \in D_f$.
- **4.** Nontrer que la droite Δ d'équation x=1 et la droite Δ' d'équation y=x+3 sont deux asymptotes à \mathcal{C} .
- 5. a) Déterminer les coordonnées du point Ω l'intersection de Δ et Δ' . b) Montrer que le point de coordonnées (1,4) est un centre de symétrie à \mathscr{C} .
- **6.** Fracer la courbe $\mathscr C$ et les droites Δ et Δ' dans un repère orthonormé (O,\vec{i},\vec{j}) .
- 7. Soit la droite D_m d'équation cartésienne : y=m où m un paramètre réel. Discuter graphiquement et suivant les valeurs de m le nombre de solution de l'équation f(x)=m.

Bon Travail

