

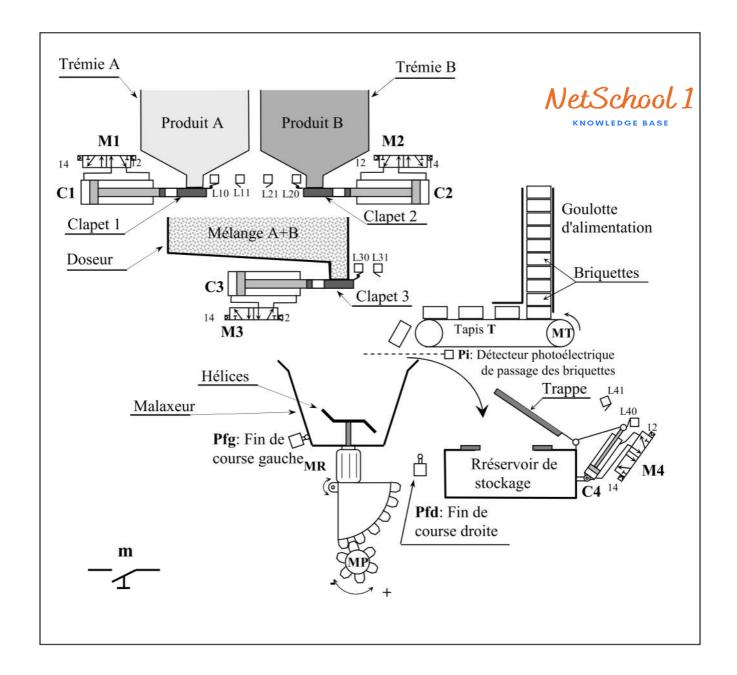
TECHNOLOGIE DES SYSTEMES TECHNIQSUES

DEVOIR DE SYNTHESE N° 1

A.S: 2010/2011

Niveau : 2^{éme} TInf

Durée: 120 mn


Prof : RHIMI Jalel

Nom:	Prénom:	2TInf	N° :

SYSTEME : POSTE DE PREPARATION DE TEINTURE DE TISSUS

DESCRIPTION

Le poste de préparation de teinture de tissus fait partie d'une usine de textile. Il permet de <u>doser</u>, malaxer puis stocker deux produits liquides A et B.

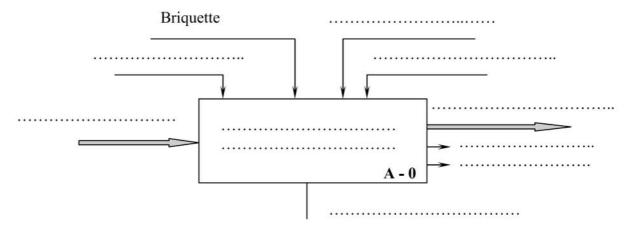
Fonctionnement du système

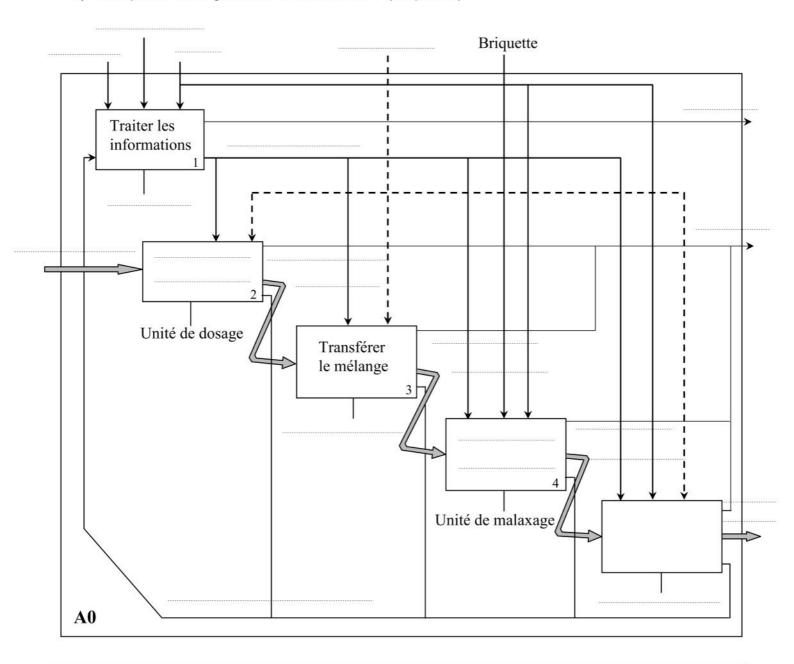
L'appui sur le bouton poussoir m déclenche le cycle suivant :

- Le dosage des produits :
 - Le clapet 3 recule pour fermer le doseur.
 - Le clapet 1 avance pour laisser écouler le produit A dans le doseur durant 20 secondes, puis recule pour fermer la trémie A.
 - Le clapet 2 avance pour laisser écouler le produit B dans le doseur durant 30 secondes, puis recule pour fermer la trémie B.
- Une fois la dose est prête le clapet 3 avance pour transférer le mélange dans le malaxeur.
- Le malaxage du mélange :
 - Amener la briquette au malaxeur par le moteur MT entraîné par le contacteur KM1 jusqu'au niveau détecté par le capteur Pi.
 - Malaxer le mélange par un moteur MR entraîné par un contacteur KM2 durant 40 secondes,
- Le stockage du mélange dans un réservoir de stockage:
 - La tige du vérin C4 recule pour ouvrir la trappe.
 - Rotation du moteur MP (dans le sens positif MP+) pour transférer le mélange dans le réservoir de stockage jusqu'au niveau détecté par le capteur Pfd.
 - Rotation du moteur MP (dans le sens négatif MP-) pour rendre le malaxeur à sa position initiale jusqu'au niveau détecté par le capteur Pfg. ${\it NetSchool}\, 1$
 - La tige du vérin C4 avance pour fermer la trappe.

Les codes ASCII en binaire

KNOWLEDGE BASE


				B6	0	0	0	0	1	1	1	1
AS	SCII à T	7 éléme	nts	B5	0	0	1	1	0	0	1	1
				B4	0	1	0	1	0	1	0	1
В3	B2	B1	В0			8 8 8 8		148	2	3.	50	
0	0	0	0		NUL	DLE	SP	0	@	P		p
0	0	0	1		SOH	DC1	!	1	A	Q	a	q
0	0	1	0		STX	DC2	11	2	В	R	b	r
0	0	1	1		ETX	DC3	#	3	С	S	с	s
0	1	0	0		ЕТО	DC4	\$	4	D	T	d	t
0	1	0	1		ENQ	NAK	%	5	Е	U	e	u
0	1	1	0		ACK	SYN	&	6	F	V	f	v
0	1	1	1		BEL	ETB	•	7	G	W	g	w
1	0	0	0		BS	CAN	(8	Н	X	h	х
1	0	0	1		HT	EM)	9	I	Y	i	у
1	0	1	0		LF	SUB	*	:	J	Z	j	z
1	0	1	1		VT	ESC	+	;	K	[k	{
1	1	0	0		FF	ES	,	<	L	\	1	Ĭ.
1	1	0	1		CR	GS	-	=	M]	m	}
1	1	1	0		SO	RS		>	N	۸	n	~
1	1	1	1		SI	US	/	?	О	_	o	DEL


Devoir de synthèse N°1 - 2010 ------Page 2

Travail demandé

- Activité 1 : Analyse fonctionnelle d'un système technique.
- 1) Compléter le diagramme A 0. (2. points)

2) Compléter le diagramme de niveau A0. (10 points)

E	Activité 2 : Systèmes de numération et codes
Pa	rtie 1 : Exemples de conversion (25 points : 2×6+1×4+1×2+1×2+0.25×4×5)
1.	Faire le codage des nombres décimaux suivants (utiliser la division euclidient

(utiliser la division euclidienne)

 $(21)_{10}$; $(45)_{10}$

On obtient (21) ₁₀ = () ₂	
On obtient (45) ₁₀ = () ₂	
2. Faire le décodage des nombres binaires suivants (10011001) ₂ ; (11011101) ₂	
On obtient (10011001) ₂ = () ₁₀	
On obtient $(11011101)_2 = (\dots)_{10}$	

 $(100)_{10}$; $(350)_{10}$

On obtient $(100)_{10} = (\dots)_8$

3. Convertir du décimal en octal (utiliser la division euclidienne)

On obtient $(350)_{10} = (\dots)_8$

4.	Convertir du décimal en hexadéci	mal (utili	ser	r la division euclidienne)
		(150) ₁₀	;	(3165) ₁₀
On	obtient $(150)_{10} = (\dots)_{16}$			
	obtient $(3165)_{10} = (\dots)_{16}$			
•	(0.00)			
5.	Convertir de l'hexadécimal en déc	cimal		
		(2B5C)	16	; (5A0E) ₁₆
				······································
Ωn	obtient (2B5C) ₁₆ = () ₁₀			
O	(LEGG) (
On	obtient $(5A0E)_{16} = (\dots)_{10}$			
•				
6. (Convertir de l'octal en décimal			
		(275	8(i	; (572) ₈
				······································
On	obtient (275) ₈ = () ₁₀			
	. , , , , , , , , , , , , , , , , , , ,			

 ······································	

On obtient $(572)_8 = (\dots)_{10}$

7. Convertir en BCD les nombres décimaux suivants

$$(735)_{10} = (....)_{BCD}$$

$$(6948)_{10} = (....)_{BCD}$$

$$(1001)_{10} = (.....)_{BCD}$$

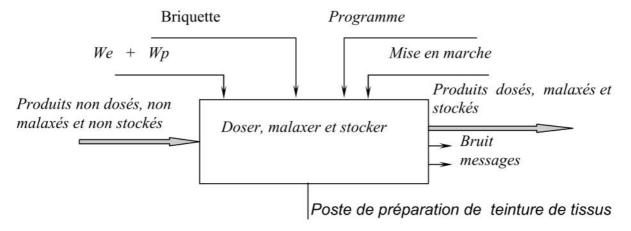
8. Convertir en décimal les nombres BCD suivants

On obtient:
$$(010110010111)_{BCD} = (.....)_{10}$$

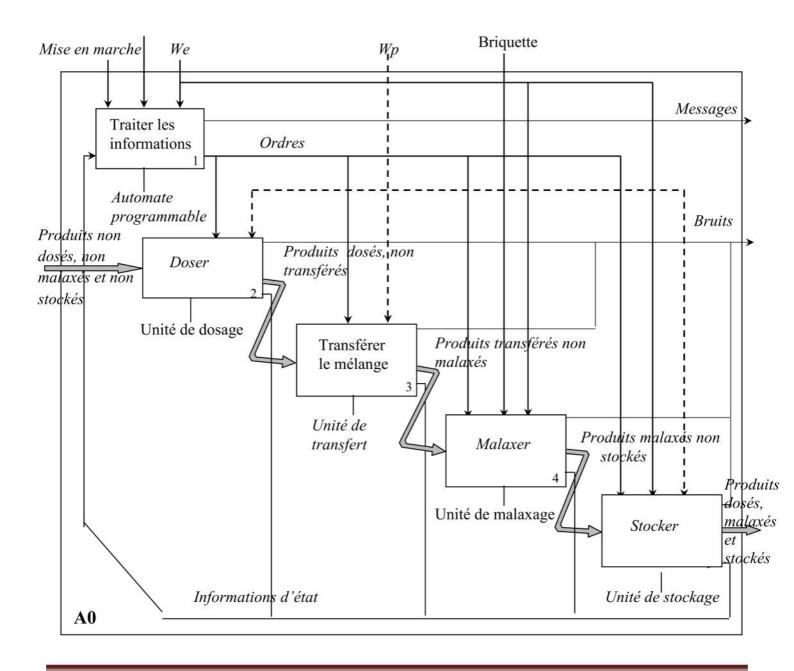
$$(10100001010011)_{BCD} = (....)_{10}$$

9. Convertir les nombres binaires suivants

10. Utiliser le tableau du code ASCII en binaire (Dossier technique page 2) et compléter le tableau suivant


Code décimal	Code binaire	Code octal	Code hexadécimal	Code ASCII
37				
	1001000			
				@
		62		
			5A	

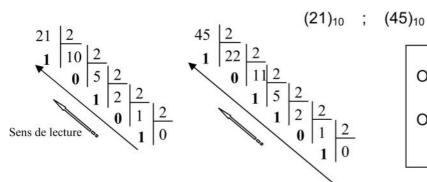
Б.	41. 0 . F
Pa	rtie 2 : Exemples d'opérations binaires (3 points : 1.5 × 2)
1.	Faire les opérations d'addition en binaire (13 + 8 et 15 + 11)
2.	Faire les opérations de multiplication en binaire (7 × 4 et 12 × 3)


Correction de DSN°1 2010

Activité 1 : Analyse fonctionnelle d'un système technique.

1) Compléter le diagramme A – 0.

2) Compléter le diagramme de niveau A0.

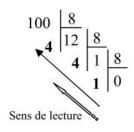


Devoir de synthèse N°1 - 2010 ------Page 8

Activité 2 : Systèmes de numération et codes

Partie 1: Exemples de conversion (25 points : $2\times6+1\times4+1\times2+1\times2+0.25\times4\times5$)

1. Faire le codage des nombres décimaux suivants (utiliser la division euclidienne)


- On obtient $(21)_{10} = (...10101....)_2$
- On obtient (45)₁₀= (...101101...)₂
- 2. Faire le décodage des nombres binaires suivants

$$(10011001)_2$$
; $(11011101)_2$

$$(10011001)_2 = 1 \times 2^7 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0$$

 $128 + 16 + 8 + 1 = (153)_{10}$
On obtient $(10011001)_2 = (...153...)_{10}$

$$(11011101)_2 = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0$$

 $128 + 64 + 16 + 8 + 4 + 1 = (221)_{10}$
On obtient $(11011101)_2 = (...221...)_{10}$

3. Convertir du décimal en octal (utiliser la division euclidienne)

$$\begin{array}{c|c}
(100)_{10} & ; & (350)_{10} \\
350 & 8 \\
6 & 43 & 8 \\
\hline
3 & 5 & 8 \\
\hline
5 & 0
\end{array}$$
Sens de lecture

- On obtient $(100)_{10} = (...144..)_8$
- On obtient $(350)_{10} = (...536..)_8$
- 4. Convertir du décimal en hexadécimal (utiliser la division euclidienne)

$$(150)_{10}$$
 ; $(3165)_{10}$

On obtient
$$(150)_{10} = (...96..)_{16}$$

On obtient
$$(3165)_{10} = (...C5D..)_{16}$$

5. Convertir de l'hexadécimal en décimal

$$(2B5C)_{16} = 2 \times 16^3 + 11 \times 16^2 + 5 \times 16^1 + 12 \times 16^0$$

 $8192 + 2816 + 80 + 12 = (11100)_{10}$

On obtient $(2B5C)_{16} = (...11100..)_{10}$

$$(5A0E)_{16} = 5 \times 16^3 + 10 \times 16^2 + 14 \times 16^0$$

 $20480 + 2560 + 14 = (23054)_{10}$

On obtient $(5A0E)_{16} = (23054.)_{10}$

6. Convertir de l'octal en décimal

$$(275)_8$$
; $(572)_8$

$$(275)_8 = 2 \times 8^2 + 7 \times 8^{21} + 5 \times 8^0$$

 $132 + 56 + 5 = (23054)_{10}$

On obtient $(275)_8 = (.193.)_{10}$

$$(572)_8 = 5 \times 8^2 + 7 \times 8^{21} + 2 \times 8^0$$

 $320 + 56 + 2 = (23054)_{10}$

On obtient $(572)_8 = (.378.)_{10}$

7. Convertir en BCD les nombres décimaux suivants

On obtient
$$(23)_{10} = (100011)_{BCD}$$

$$(735)_{10} = ($$
 11100110101 $)_{BCD}$

$$(6948)_{10} = (0110100101001000)_{BCD}$$

$$(1001)_{10} = (1000000000001)_{BCD}$$

8. Convertir en décimal les nombres BCD suivants

010110010111 , 10100001010011

On obtient: $(010110010111)_{BCD} = (597)_{10}$; $(10100001010011)_{BCD} = (...2853...)_{10}$

9. Convertir les nombres binaires suivants

$$(1011)_2 = (1110...)_{réfléchi}$$
 $(1111)_{réfléchi} = (...1010......)_2$

10. Utiliser le tableau du code ASCII en binaire (Dossier technique page 2) et compléter le tableau suivant

Code décimal	Code binaire	Code octal	Code hexadécimal	Code ASCII (caractères)
37	100101	45	25	%
72	1001000	110	48	Н
64	1000000	100	40	@
50	110010	62	32	2
90	1011010	132	5A	Z

Partie 2: Exemples d'opérations binaires (3 points : 1.5 × 2)

1. Faire les opérations d'addition en binaire (13 + 8 et 15 + 11)

2. Faire les opérations de multiplication en binaire (7 × 4 et 12 × 3)