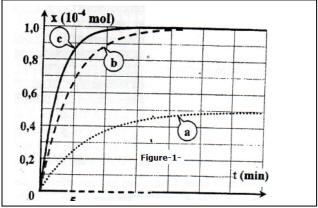
Lycée Hamouda	Devoir de contrôle n: 1	PROF : Nefzi Issam	
Becha	sciences physiques	Date: 03-11-2017	
2017 - 2018	Durée : 2 heures	Classes: 4 ^{ème} Sc _{1,4,3}	

Chimie: (9pts)
Exercice n: 1 (4,5pts)

Au cours d'une séance de travaux pratiques, on étudie expérimentalement l'évolution de la réaction entre les ions iodures \mathbf{I}^- et les ions peroxodisulfate $\mathbf{S_2O_8}^{2^-}$ qui mène a la formation de diiode $\mathbf{I_2}$ et des ions sulfate $\mathbf{SO_4}^{2^-}$. L'équation de la réaction qui se produit est :


$$S_2O_8^{2-} + 2.1^- \longrightarrow I_2 + 2.SO_4^{2-}$$

On dispose d'une solution S_1 d'iodure de potassium KI de concentration $c_1=0,1 \text{mol.L}^{-1}$ et d'une solution S_2 de peroxodisulfate de potassium $K_2S_2O_8$ de concentration $c_2=5.10^{-3} \text{mol.L}^{-1}$

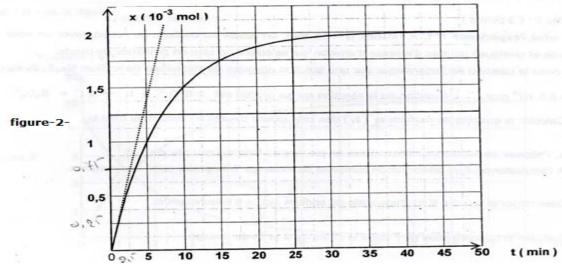
Quatre groupes d'élèves G_1 , G_2 , G_3 et G_4 réalisent séparément ces expériences dans différentes conditions. Pour cela chaque groupe mélange au même instant , pris comme origine du temps, un volume V_1 de S_1 avec un volume V_2 de S_2 et complète par de l'eau distillée pour obtenir un mélange de volume final V=100mL.

Le tableau ci-dessous récapitule les conditions dans les quelles sont réalisées les quatre expériences. Le suivie de l'évolution de l'avancement \mathbf{x} au cours du temps, a permis aux groupes $\mathbf{G_1}$, $\mathbf{G_2}$ et $\mathbf{G_3}$ d'obtenir les courbes de la **figure-1-**.

Groupe	G ₁	G ₂	G_3	G_4
Volume de S1en mL	20	10	20	20
Volume de S2 en mL	20	10	20	20
Volume d'eau ajoutée	60	80	60	60
en mL				
Présence de Fe2+	Non	Non	Non	Oui
Température en °C	20	20	60	20

- -1- On s'intéresse a l'expérience réalisée par le groupe G₁.
- -a- Déterminer la quantité de matière initiale des deux réactifs.
- -b- Dresser le tableau descriptif d'évolution de la réaction, déterminer la valeur de l'avancement maximale $\mathbf{x}_{\mathbf{m}}$ et déduire le réactif limitant.
- -2- -a-Préciser les facteurs cinétiques mis en jeu au cours des expériences réalisées par les groupes G_1 , G_2 et G_3 .
- -b- Attribuer à chaque groupe la courbe correspondant a son expérience. Justifier la réponse.
- -3- L'une des réactions réalisées par l'un des groupes G_1 ou G_4 atteint l'état final plus rapidement que l'autre.
- -a- Donner avec justification le rôle joué par les ions **Fe**²⁺ au niveau de la cinétique de la réaction.
- -b- En justifiant la réponse, préciser parmi G_1 ou G_4 , le groupe dont la réaction atteint son état final plus rapidement.

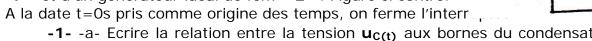
Exercice n: 2 (4,5pts)

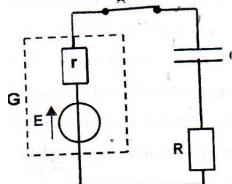

L'oxydation des ions iodure **I**⁻ par les ions peroxodisulfate est une réaction chimique **totale**. Cette réaction est symbolisée par l'équation suivante :

$$S_2O_8^{2-} + 2.1^- \longrightarrow I_2 + 2.SO_4^{2-}$$

Dans un erlenmeyer, on mélange à l' instant $t_0=0min$, un volume $v_1=40mL$ d'une solution S_1 d'iodure de potassium KI de concentration c_1 , avec un volume $v_2=60mL$ d'une solution de peroxodisulfate de potassium $K_2S_2O_8$ de concentration $c_2=4.10^{-2}mol.L^{-1}$.

Le suivi de l'avancement \mathbf{x} de cette réaction au cours du temps, a permis de tracer la courbe $\mathbf{x} = \mathbf{f(t)}$ de la figure-2-.

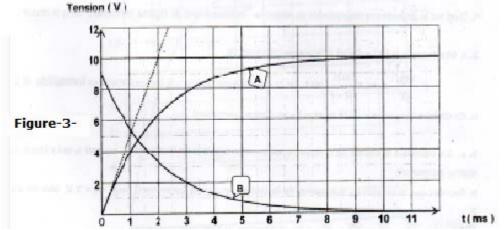



- -1- C'est une réaction lente ou rapide ? Justifier.
- -2- -a- Dresser le tableau descriptif en \mathbf{x} , de l'évolution du système relatif a la réaction étudiée. On notera \mathbf{n}_{01} et \mathbf{n}_{02} les nombres de moles initiales respectivement de \mathbf{l}^- et de $\mathbf{S_2O_8}^{2-}$.
- -b- Préciser en utilisant le tableau descriptif, la relation entre l'avancement \mathbf{x} de la réaction et la quantité de diiode formée $\mathbf{n}_{12(t)}$ à un instant t donné.
- -3- -a- Calculer n_{02} , et en exploitant la courbe de la **figure-2-**, montrer que I^- est le réactif limitant de la réaction.
- -b- Montrer que $n_{01}=4.10^{-3}mol$ et calculer la valeur de la concentration c_1 de la solution S_1 .
- **-4-** -a- Déterminer graphiquement, a l'instant t_0 =**0min** la valeur v_0 de la vitesse instantanée de la réaction.
- -b- Que représente cette vitesse, et préciser avec justification comment elle évolue au cours du temps.

Physique: (13pts)

Exercice n: 1 (7pts)

On considère le circuit électrique série comportant un conducteur ohmique de résistance \mathbf{R} , un condensateur de capacité \mathbf{C} initialement déchargé et un interrupteur \mathbf{K} . L'ensemble est alimenté par un générateur \mathbf{G} de tension continue de force électromotrice (fem) \mathbf{E} et de résistance interne « \mathbf{r} ». On peut modéliser ce générateur par l'association en série d'un conducteur ohmique de résistance « \mathbf{r} » et d'un générateur idéal de fem « \mathbf{E} ». Figure ci contre.

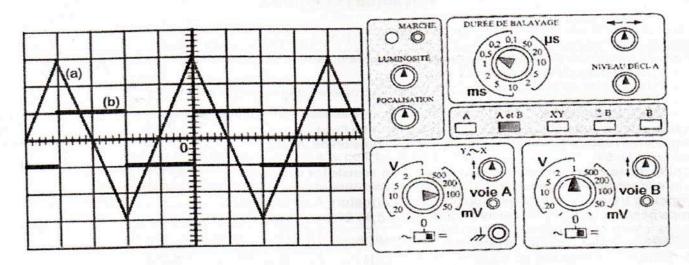


- -1- -a- Ecrire la relation entre la tension $\mathbf{u}_{C(t)}$ aux bornes du condensateur \mathbf{E} , \mathbf{R} , \mathbf{r} et l'intensité du courant $\mathbf{i}(t)$ qui circule dans le circuit. Que devient cette relation en régime permanant ?
 - -b- Montrer qu'a t=0s, l'intensité de courant I_0 est donnée par la relation : $I_0 = \frac{E}{R+r}$.
- -2- -a- L'équation différentielle régissant les variations de la charge ${\bf q}$ du condensateur au cours du temps s'écrit : $({\bf R}+{\bf r}).{\bf C}.\frac{{\bf d}{\bf q}}{{\bf d}t}+{\bf q}={\bf C}.{\bf E}.$

Vérifier que la charge ${\bf q}$ du condensateur satisfait a la relation : ${\bf q(t)} = {\bf \beta}.(1-e^{-\frac{t}{\tau}})$, ou ${\bf \beta}$ et ${\bf \tau}$ sont des constantes dont on déterminera les expressions en fonction de ${\bf E}$, ${\bf R}$, ${\bf r}$ et ${\bf C}$.

-b- En déduire l'expression instantanée de chacune des tensions $\mathbf{u}_{\mathtt{C(t)}}$ et $\mathbf{u}_{\mathtt{R(t)}}$ aux bornes de la résistance \mathbf{R} .

-3- Un oscilloscope bi courbe permet de visualiser l'évolution temporelle des tensions $\mathbf{u}_{\mathbf{C(t)}}$ et $\mathbf{u}_{\mathbf{R(t)}}$. On obtient les courbes \mathbf{A} et \mathbf{B} de la **figure-3-**.



- -a- Attribuer avec justification a chaque courbe de la **figure-3-** la tension correspondante.
- -b- par exploitation des courbes « $\bf A$ » et « $\bf B$ », déterminer les valeurs de $\bf E$ et de la constante de temps τ du circuit.
- -c- Sachant que la valeur maximale de l'intensité du courant qui circule dans le circuit vaut I_0 =50mA, montrer que la capacité C du condensateur vérifie la relation : $C = \frac{I_0 \cdot \tau}{E}$. Calculer sa valeur. Calculer les valeurs de R et r.

Exercice n: 2 (4 pts)

On désire déterminer l'inductance L d'une bobine « B ». On réalise le circuit électrique AB qui comporte associés en série la bobine d'inductance L et de résistance interne supposée nulle, un résistor de résistance $R=1k\Omega$, un interrupteur K et un générateur G délivrant une tension alternative triangulaire.

On ferme l'interrupteur \mathbf{k} et a l'aide d'un oscilloscope bicourbe, on visualise simultanément la tension $\mathbf{u}_{AM}(\mathbf{t})$ aux bornes de la bobine sur la **voie-A-** et la tension \mathbf{u}_{BM} (\mathbf{t}) aux bornes du résistor sur la **voie-B-**.

- -1- -a- Identifier parmi les chronogrammes « $\bf a$ » et « $\bf b$ » celui qui correspond a la tension visualisée sur la $\bf voie-B-$. Justifier.
 - -b- Déterminer la fréquence N du GBF.
 - -2- Donner les expressions des tensions \mathbf{u}_{AM} et \mathbf{u}_{BM} en fonction de l'intensité « \mathbf{i} » du courant et des caractéristiques du dipôle \mathbf{AB} .

Exprimer \mathbf{u}_{AM} en fonction de \mathbf{u}_{BM} , \mathbf{L} et \mathbf{R} . Déterminer la valeur de l'inductance \mathbf{L}

