LYCEE SECONDAIRE BOUMERDES ******* DEVOIR DE SYNTHESE N°01 ******** PROF: F.ZAIED | DATE: 03/01/2016

Exercice N°01 (2 pts)

On considère une fonction f deux fois dérivable sur \square et on désigne par (ζ_f) sa courbe dans un repère orthonormé . Dans le graphique ci – contre , on a representé la courbe (ζ_f) de la fonction déeivée de f

 \Box La droite Δ : $y = -\frac{1}{2}$ est une asymptote à ζ'_f en $+\infty$ et $-\infty$

 \Box La courbe ζ'_f admet une unique tan gente horizontale au point $A\left(0,\frac{1}{2}\right)$.

Répond par vrai ou faux en justifiant la réponse.

- 1)La courbe (ζ_f) admet exactement deux tan gentes horizontales.
- 2) Il existe une tan gente à $\left(\zeta_{\rm f}\right)$ de coefficient directeur $\left(-\frac{1}{2}\right)$.
- 3) La courbe (ζ_f) admet un point d'inf lexion.
- 4) $|f(2017) f(2016)| \le \frac{1}{2}$

Exercice N°02 (4 pts)

- I) On considère l'équation dans \Box . (E): $z^2 (2a+i)z + 2a^2 + ia a = 0$ avec $a \in \Box \setminus \left\{ \frac{1}{2} \right\}$ Résoudre dans \Box l'équation (E)
- II) Le plan est rapporté à un repère orthonormé direct $\left(O,\overrightarrow{OA},\overrightarrow{OB}\right)$.

 A tout M d'affixes a on associe les points N et Q d'affixes $z_N = (1-i)a+i$ et $z_Q = (1+i)a$ Et soit I le point d'affixe $\frac{1+i}{2}$
 - 1) a) Vérifier que : $\frac{Aff(\overrightarrow{IQ})}{Aff(\overrightarrow{IN})} = i$
 - b) En déduire que Q est l'image de N par la rotation de centre I et d'angle $\frac{\pi}{2}$
- 2) On suppose que M appartient au cercle $\zeta_{[AB]}$ de diamètre [AB].
 - a) Vérifier que QN =1
 - b) En déduire que lorsque M varie sur $\zeta_{[AB]}$, les points N et Q varient sur un cercle ζ' que l'on précisera.

Exercice N°03 (9 pts)

Soit f la fonction définie sur]2,+ ∞ [par f(x) = $\frac{2x}{\sqrt{x^2-4}}$

- 1) a) Montrer que f est dérivable sur]2,+ ∞ [et que pour tout $x \in$]2,+ ∞ [; $f'(x) = \frac{-8}{\left(\sqrt{x^2 4}\right)^3}$
 - b) Dresser le tableau de variation de f.
 - c)Tracer $\zeta_{\scriptscriptstyle f}$ dans un repère orthonormé .
- 2) a) Montrer que f realise une bijection de]2,+ ∞ [sur lui même
 - b) Expliciter $f \circ f(x)$ pour $x \succ 2$. En déduire que la droite $\Delta : y = x$ est un axe de symétrie à ζ_f
- 3) Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $g(x) = \begin{cases} \frac{1}{2}f\left(\frac{2}{\cos x}\right) + \frac{1}{4} & \text{si } x \neq \frac{\pi}{2} \\ \frac{5}{4} & \text{si } x = \frac{\pi}{2} \end{cases}$
 - a) Montrer que g est continue à gauche de $\frac{\pi}{2}$
 - b) Montrer que g est dérivable sur $\left]0, \frac{\pi}{2}\right[$ et que $g'(x) = \frac{-\cos x}{\sin^2 x}$ pour tout $x \in \left]0, \frac{\pi}{2}\right[$
- 4)a) Montrer que $\forall x \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$ on a $|g'(x)| \le \frac{2}{3}$
 - b) Montrer que l'équation g(x) = x admet dans $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$ une solution unique α
- 5) Soit (U_n) la suite réelle définie sur \square par : $\begin{cases} U_0 = \frac{\pi}{3} \\ U_{n+1} = g(U_n) \end{cases}$
 - a) Montrer que $\forall n \in \square$: $\frac{\pi}{3} \le U_n \le \frac{\pi}{2}$
 - b) Montrer que $\forall n \in \square$: $\left| U_{n+1} \alpha \right| \le \frac{2}{3} \left| U_n \alpha \right|$ et en déduire que $\forall n \in \square$: $\left| U_n \alpha \right| \le \left(\frac{2}{3} \right)^n \left(\alpha \frac{\pi}{3} \right)$
 - c) Montrer que (Un) est convergente et donner sa limite
- 6) On pose pour $x \in \left[0, \frac{\pi}{2}\right]$, $h(x) = \frac{5}{8} \frac{1}{2}g(x)$
 - a) Vérifier que $h(x) = \frac{1}{2} \frac{1}{2 \sin x}$
 - b) Dresser le tableau de variation de h
 - c) Montrer que h réalise une bijection de $\left]0, \frac{\pi}{2}\right[$ sur un intervalle que l'on précisera
- 7) Soit la suite V définie par \forall $n \in \square$ * , $V_n = \frac{1}{n} \sum_{k=1}^n \ h^{-1} \left(\frac{-k}{n^2} \right)$
 - $a)\, Montrer \,\, que \,\, \forall \,\, n \in \square^{\, *} \quad , h^{-1} \Bigg(\frac{-1}{n} \Bigg) \leq V_n^{} \leq h^{-1} \Bigg(\frac{-1}{n^2} \Bigg)$
 - b) En déduire que V est convergente et déterminer sa limite

Exercice N°04 (5 pts)

Soit ABCD un rec tan gle direct de centre O tel que AD = 2AB, on désigne par I, J et K les milieux respectifs des segments $\begin{bmatrix} AD \end{bmatrix}$, $\begin{bmatrix} AI \end{bmatrix}$ et $\begin{bmatrix} BC \end{bmatrix}$ et D' le symétrique de I par rapport au point K.

- 1)a) Montrer qu'il existe un unique antidéplacement f tel que f(A) = I et f(B) = D.
 - b) Montrer que f est une symétrie glissante.
- 2) a) Montrer que f(I) = K
 - b) Donner alors la forme réduite de f.
 - c) Montrer que f(K) = C et déter min er f(D)
- 3) Soit $g = f \circ S_{(AB)}$
- a) Détermin er g(A) et g(B)
- b) Montrer que g est une rotation dont on précisera l'angle
- c) Montrer que $g = t_{\overline{AI}} \circ R_{\left(A, \frac{\pi}{2}\right)}$.
- d) Soit AIEF est un carré direct de centre G , Détermin er $g\circ g(A)$ et en déduire le centre de g.
- 4) Le plan est rapporté à un repère orthonormé direct $(A, \overline{AB}, \overline{AI})$. Soient M(z) et M'(z'), montrer que : M' = g(M) si est seulement si z' = iz + i

Vers la victoire finale