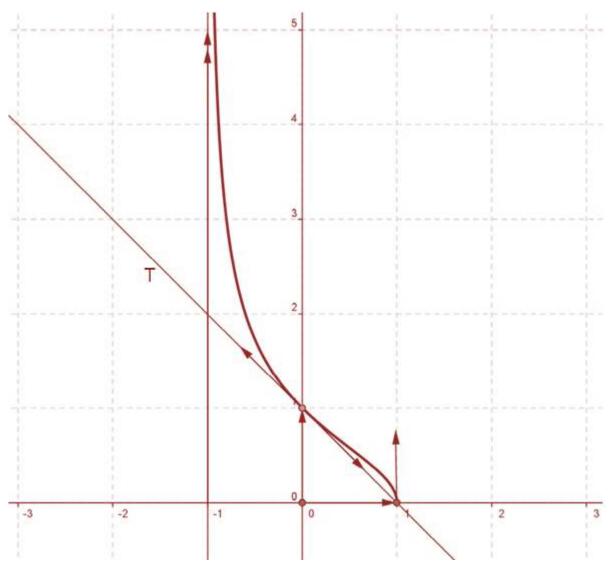
Lycée Ibn Khaldoun Jammel 09/11/2016

Exercice 1:

On donne ci-dessous la courbe représentative dans un repère orthonormé d'une fonction f définie sur]-1; 1[.

Sur cette courbe on a indiqué la tangente T au point d'abscisse 0, la demi-tangente au point d'abscisse 1 et l'asymptote verticale d'équation x = -1



- 1.) En utilisant le graphique :
 - $\text{a. Donner } f(0) \text{ , } f(1) \text{ , } \lim_{x \to (-1)^+} f(x) \text{ , } \lim_{x \to \, 0} \, \frac{f(x) 1}{x} \text{ et } \lim_{x \to \, 1^-} \, \frac{f(x)}{x 1}$
 - b. Donner une équation de la tangente T.
 - c. Donner f(]-1;1])
- 2.) On donne pour tout $x \in]-1;1[, \mathbf{f}'(\mathbf{x}) = \frac{-1}{(x+1)\sqrt{1-x^2}}.$

Soit h la fonction définie sur]0; $\pi[$ par h(x) = f(cosx).

- a. Calculer $\lim_{x \to \pi^-} h(x)$.
- b. Montrer que h est dérivable sur]0; $\pi[$ et calculer h'(x).

Exercice 2:

Soit f la fonction définie sur IR par $f(x) = x^2 - \sin \frac{\pi}{2}x$.

On désigne par (C_f) sa courbe representative dans un repère orthonormé $(0;\vec{i},\vec{j})$.

- 1.) Justifier la continuité et la dérivabilité de f sur IR.
- 2.) a. Montrer qu'il existe un point de (C_f) d'abscisse e appartient à | 0,1 | tel que la tangente en ce point est de vecteur directeur i.
 - b. Calculer f'(x) pour tout réel x.
 - c. Montrer que f(e) = $e^2 \frac{\sqrt{\pi^2 16e^2}}{\pi}$
- 3.) Montrer que l'équation 2f(x) = 3 admet une solution $\alpha \in [1; 2]$

Exercice 3:

Dans le plan muni d'un repère orthonormé ($0; \vec{u}, \vec{v}$),on considère les points A,B,C et E d'affixes respectives : $z_A=1-i$; $z_B=3i$; $z_C=-3-2i$ et $z_E=-i$. 1.) a. Montrer que ABC est un triangle isocèle et rectangle.

- - b. Déterminer l'affixe de D tel que : ABDC soit un carré.
- 2.) Soit f l'application du plan dans lui-même définie par :

f:
$$\mathscr{D} \setminus \{0\} \to \mathscr{D}$$

 $M(z) \mapsto M'(z')$ tel que $z' = \frac{z-3i}{iz}$

- a. Déterminer l'ensemble (E₁) des points M(z) tel que z 'soit réel.
- b. Montrer que pour tout réel $z \neq 0$ on a : iz(z' + i) = -3i.
- c. En déduire que si M appartient au cercle $C_{(0,6)}$ de centre O et de rayon 6 alors M'appartient à un cercle que l'on précisera.
- 3.) On suppose que $z = 3ie^{2i\theta}$ où $\theta \in [0; \pi[$
 - a. Montrer que $z' = 2\sin\theta e^{-i\theta}$.
 - b. Déterminer θ pour que M' soit sur le cercle trigonométrique.

Exercice 4:

Soit u la suite définie sur \mathbb{N} par : $\mathbf{u_0} = -2$ et $\mathbf{u_{n+1}} = \frac{4\mathbf{u_n} + 3}{\mathbf{u_n} + 6}$

- 1.) a. Montrer que pour tout $\in \mathbb{N}$, $-2 \le u_n \le 1$.
 - b. Montrer que u est convergente et calculer sa limite.
- 2.) Soit la suite v définie sur N par $\mathbf{v_n} = \frac{\mathbf{u_n} + 3}{\mathbf{u_n} 6}$
 - a. Montrer que la suite v est géométrique de raison $q = \frac{7}{3}$
 - b. Exprimer v_n puis u_n en fonction de n.
 - c. Retrouver la limite de (u_n).

