## Lycée Takelsa Prof : Mourad Ziadi



# Devoir de Contrôle N:1 Mathématiques

 Date: 04/11/2014
 Durée: 2h
 Classe: 4ème

### Exercice No 01(03pts)

Répondre par « Vrai » ou « Faux », en justifiant la réponse.

- 1) La suite définie pour tout entier naturel n par  $u_n = \frac{1}{n+1} + (-1)^n$  est convergente.
- 2)  $\frac{13\pi}{12}$  est un argument du nombre complexe  $z=-\frac{\sqrt{2}}{1+i}e^{i\frac{\pi}{3}}$
- 3) Soit  $\theta$  un réel. L'ensemble des points M d'affixe  $z = 1 3i + e^{2i\theta}$  est le cercle de centre le point J d'affixe -1 + 3i et de rayon 1.
- 4) Dans le plan est rapporté au repère orthonormé (O, u, v) on considère les points A et B d'affixes respectives non nulles  $z_A$  et  $z_B$  telle que  $z_B = iz_A$ . Le triangle OAB est alors rectangle isocèle en O

### Exercice No 02(06pts)

Dans le plan complexe rapporté à un repère orthonormé  $(O, \overrightarrow{u}, \overrightarrow{v})$  (unité graphique : 2cm). On considère les points A ; B et C d'affixes respectives  $z_A = 1 - i$  ;  $z_B = 2 + \sqrt{3} + i$  et  $z_C = 2$ . Soit  $\xi$  le cercle de centre C et de rayon 2.

- 1) a) Vérifier que  $B \in \xi$ .
  - b) Placer les points A et C. Construire alors le point B.
- 2) a) Ecrire  $z_A$  sous forme exponentielle.
  - b) Ecrire  $\frac{z_B}{z_A}$  sous forme algébrique.
  - c) Montrer que  $\frac{z_B}{z_A} = (1 + \sqrt{3}) e^{i\frac{\pi}{3}}$ .
  - d) En déduire la forme exponentielle de  $z_B$ .
  - e) Déterminer alors la valeur exacte de  $sin(\frac{\pi}{12})$ .
- 3) Déterminer l'ensemble des points M(z) du plan tel que :  $|z|=|\overline{z}-1-i|$  .
- 4) Pour tout point M du plan d'affixe  $z \neq 2$  on associe le point M' d'affixe z' tel que :  $z' = -3i(\frac{z-1+i}{z-2})$ .
  - a) Déterminer l'ensemble des points M(z) tel que  $z^\prime$  soit réel .
  - b) Montrer que OM' =  $3\frac{AM}{CM}$ .
  - c) En déduire que lorsque M décrit la médiatrice de [AC] ; le point M' décrit un cercle que l'on déterminera.



### Exercice No 03(05pts)

Soit f la fonction définie sur IR par :

$$f(x) = \begin{cases} \frac{1 + \sqrt{x} \cos x}{x + 2} six \ge 0\\ \frac{x^2}{4(\sqrt{x^2 + 1} - 1)} six < 0 \end{cases}$$

- 1) Montrer que f est continue en 0
- 2) a)Montrer que pour tout réel positif x on a :  $\frac{1-\sqrt{x}}{x+2} \le f(x) \le \frac{1+\sqrt{x}}{x+2}$ 
  - b) En déduire la limite de f(x) en  $+\infty$
- 3) Déterminer, <u>en justifiant la réponse</u>, les limites suivantes :  $\lim_{x \to 0^+} f(\frac{1}{\sqrt{x}})$  et  $\lim_{x \to \frac{\pi}{2}} f(1 \sin x)$
- 4) a) Montrer que l'équation f(x) = 0 admet dans  $\frac{\pi}{2}$ ,  $\pi$  une solution qu'on notera  $\alpha$ 
  - b) Montrer que  $\tan(\alpha) = -\sqrt{\alpha 1}$  (Indication : On rappelle que  $1 + \tan^2 x = \frac{1}{\cos^2 x}$ )

#### Exercice No 04(06pts)

On considère les suites  $(a_n)$  et  $(b_n)$  définies par :  $a_0 = 1$ ,  $b_0 = 7$  et pour tout entier naturel n

on a: 
$$a_{n+1} = \frac{2a_n + b_n}{3}$$
 et  $b_{n+1} = \frac{a_n + 2b_n}{3}$ . On pose  $u_n = b_n - a_n$ .

- 1)a) Montrer que  $(u_n)$  est une suite géométrique dont on précisera le premier terme et la raison.
  - b) Exprimer, alors  $u_n$  en fonction de n . En déduire la limite de  $(u_n)$ .
- 2) Soit  $S_n = \sum_{k=0}^n (b_k a_k)$ .
- a) Montrer que  $S_n = 9[1 (\frac{1}{3})^{n+1}]$ .
- b) En déduire la limite de  $S_n$ .
- 3) a) Montrer que pour tout n de  $\mathbb N$  on a :  $a_n \leq b_n$  .
  - b) Montrer que la suite  $(a_n)$  est croissante et que la suite  $(b_n)$  est décroissante.
- 4) Démontrer que les suites ( $a_n$ ) et ( $b_n$ ) sont adjacentes.
- 5) Soit  $(v_n)$  la suite définie par  $v_n = a_n + b_n$  pour tout  $n \in \mathbb{N}$ .
  - a) Montrer que  $(v_n)$  est une suite constante.
  - b) Justifier que les suites ( $a_n$ ) et ( $b_n$ ) sont convergentes et calculer leur limite commune.

BON TRAVAIL