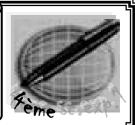
DEVOIR DE CONTROLE N°1

PROF - BELLILI MONGI

DATE: 10/11/2015, Durée: 2h



EXERCICE N°1 (03 pts)

Le plan complexe est muni d'un repère orthonormé (O, \vec{u}, \vec{v})

1°) Le nombre complexe : $\cos\left(\frac{3\pi}{8}\right) + i\sin\left(\frac{3\pi}{8}\right)$ est une racine quatrième de :

a/ l'unité

b/ i

c/-i

2°) Soit z un nombre complexe non nul d'argument α . Alors un argument de $\frac{z^3}{z}$ est :

a/ 2α

b/ 4α

c/ $\alpha^3 + \alpha$

3°) Soient A et B deux points d'affixes respectives 3 et 3i.

Alors l'ensemble des points M(z) tel que : $\frac{z-3i}{z-3}$ soit imaginaire pur est :

a/ la droite (AB) privée

b/ Le segment [AB] privé c/ Le cercle de diamètre [AB]

des points A et B

des points A et B

privé des points A et B

 $4^{\circ}) \ \ \text{On considère les nombres complexes}: \ a = \left(\frac{1-i}{1+i}\right)^{n} \ \ \text{et} \ \ b = \left(\frac{1+i}{1-i}\right)^{n} \ \ \text{avec} \ \ n \in \mathbb{Z}$

a/a-b=0

b/ $(\mathbf{a} - \mathbf{b}) \in \mathbb{R}$

c/ $(\mathbf{a} - \mathbf{b}) \in \mathbf{i} \mathbb{R}$

EXERCICE N°2 (04 pts)

Soit f la fonction définie sur IR par : $\begin{cases} f(x) = -4x^2 \cos^2\left(\frac{\pi}{2x}\right) + x + 1 & \text{si } x < 0 \\ f(x) = \sqrt{x^2 + x + 1} - 2x & \text{si } x \ge 0 \end{cases}$

- 1°) a- Montrer que pour tout x < 0 on a : $-4x^2 + x + 1 \le f(x) \le x + 1$ b- Déduire $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to 0^-} f(x)$
- 2°) Etudier la continuité de f en 0
- 3°) Calculer : $\lim_{x \to +\infty} f(x)$
- 4°) Montrer que l'équation f(x) = 0 admet au moins une solution $\alpha \in [0, 1]$.

EXERCICE N°3 (05 pts)

Soit la suite (U_n) définie sur IN par: $U_0=3$ et $U_{n+1}=\frac{4U_n-2}{U_n+1}$, $n\in\mathbb{N}$.

- 1°) a- Montrer que pour tout entier naturel n on a : $\boldsymbol{U}_n \geq 2$.
 - b- Montrer que la suite (Un) est décroissante.
 - c- Déduire que la suite (U_n) converge puis calculer sa limite 1.
- 2°) a- Montrer que pour tout entier naturel n on a : $U_{n+1} 2 \le \frac{2}{3} (U_n 2)$
 - b- Déduire que pour tout entier n on a : $U_n 2 \le \left(\frac{2}{3}\right)^n$
 - c- Déduire $\lim_{n\to +\infty} U_n$

EXERCICE N°4 08 pts Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$

I/ 1°) a- Calculer :
$$\left(\sqrt{3} + 2i\right)^2$$

- b- Résoudre dans \mathbb{C} l'équation : $z^2 2\sqrt{3} \cdot z + 4 i4\sqrt{3} = 0$
- 2°) On considère le point A d'affixe: $a = 2\sqrt{3} + 2i$
 - $a-Mettre\ sous\ forme\ exponentielle\ a\ .$
 - b- Placer le point A
- 3°) On considère le nombre complexe : $\mathbf{u} = \frac{\sqrt{6} + \sqrt{2}}{2} + \mathbf{i} \frac{\sqrt{6} \sqrt{2}}{2}$
 - a- Calculer u²
 - b- Déduire la forme exponentielle de u
 - c- Déterminer les valeurs de : $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$

II/ Soient I le point d'affixe 1

A tout point M d'affixe z non nul, on associe le point M' d'affixe z' tel que: $z' = \frac{z}{z}$

- 1°) Montrer que : $\mathbf{z}'.\overline{\mathbf{z}'} = 1$ puis interpréter géométriquement le résultat.
- 2°) Montrer que les vecteurs \overrightarrow{IM} et \overrightarrow{OM} sont orthogonaux
- $3^\circ)$ Construire alors le point M , image d'un point M distinct de O donné.

